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CT – Chapitre A

Unités et dimensions

I - Grandeur
Une « grandeur » est la propriété d’un phénomène, d’un corps ou d’une substance, que l’on peut exprimer
quantitativement sous forme d’un nombre et d’une référence. La référence peut être une unité de mesure, une
procédure de mesure, un matériau de référence, ou une de leurs combinaisons.

II - Système international de grandeurs
Par convention, il est décidé que dans le Système international il existe sept grandeurs de base indépendantes
les unes des autres : longueur, masse, durée, courant électrique, température thermodynamique, quantité de
matière et intensité lumineuse. Ces sept grandeurs de base forment le Système international de grandeurs.

III - Dimensions et unités

III.1 - Dimensions
Il convient tout d’abord de ne pas confondre les deux notions d’unité et de dimension. La dimension d’une
grandeur physique définit la qualité de cette grandeur, tandis que l’unité permet d’en préciser la quantité (c’est-
à-dire une valeur numérique). « Masse » est une dimension, « kilogramme » est une unité.
La dimension répond à la question « de quoi s’agit-il ? ».
La valeur et l’unité répondent à la question « combien y en a-t-il ? ».
À chacune des sept grandeurs de base est associée une dimension, indépendante du système d’unité, qui porte
le même nom que la grandeur de base et à laquelle on associe un symbole (voir table ??). Ces sept dimensions
fondamentales sont cohérentes et permettent, par combinaison, d’exprimer la dimension de n’importe quelle
grandeur physique. Ainsi, la dimension de toute grandeur physique peut être écrite sous la forme :

dim(G) ≡ Lα Mβ Tγ Iδ Θε Nζ Jη (A.1)

où les exposants α, β, γ, δ, ε, ζ et η sont des petits nombres, très souvent entiers.
Deux grandeurs ayant la même dimension sont dites homogènes.
Le calcul aux dimensions (ou encore équation aux dimensions) est fondamental en Sciences physiques. Il permet,
en raisonnant uniquement sur les dimensions des grandeurs, de construire l’essentiel du résultat d’un calcul. Il
permet surtout, quand on ne connaît pas la loi physique qui régit le phénomène, d’anticiper sa forme. Enfin, il
permet de retrouver d’innombrables erreurs de calculs, en assurant l’homogénéité des formules. Un résultat
qui n’est pas homogène en dimension est forcément faux.

Remarque lorsqu’on écrit une équation aux dimensions, il est possible d’encadrer une grandeur pour préciser
que l’on s’intéresse à sa dimension et non à sa valeur.
Exemple : dimG ≡ [G]

III.2 - Unités
À chaque grandeur de base, correspond également une unité de base. Il y a donc sept unités de base : mètre,
kilogramme, seconde, ampère, kelvin, mole et candela. Ces sept unités constituent le Système international
d’unités. Le système international d’unités n’est pas le seul système d’unité existant, ni même le seul utilisé
(penser par exemple aux systèmes d’unités anglo-saxons) mais c’est le système accepté par la communauté
scientifique internationale et qui a valeur légale en France comme dans de nombreux pays.
La valeur d’un volume peut ainsi être exprimée en « mètres-cubes » ou en « litre », mais seul le mètre-cube est
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Dimension Symbole Unité du SI Symbole
Longueur L mètre m

Masse M kilogramme kg
Temps T seconde s

Intensité de courant électrique I ampère A
Température Θ kelvin K

Quantité de matière N mole mol
Intensité lumineuse J candela cd

Table A.1 – Grandeurs de base, et unités associées dans le système international et symboles des dimensions associées,
d’après le Bureau international des poids et mesures (BIPM).

une unité du SI.

Historiquement, les unités du Système international ont été définies à partir d’objets ou de mesures concrètes.
Par exemple, en 1795, le mètre correspondait au dix-millionième de la distance entre le pôle Nord et l’équateur le
long d’un méridien terrestre. De même, le kilogramme était défini par la masse d’un cylindre en platine-iridium
conservé au Bureau international des poids et mesures.
Ce type de définition posait cependant un problème : il dépendait de mesures ou d’objets matériels, donc
sensibles aux erreurs, aux incertitudes de mesures et aux variations dans le temps. Pour garantir une stabilité
parfaite, on a progressivement remplacé ces références historiques par des définitions basées sur des constantes
fondamentales de la physique, dont les valeurs sont universelles et fixes.
Aujourd’hui, par exemple, le mètre n’est plus relié à la Terre mais à la lumière : il correspond à la distance
parcourue dans le vide par la lumière en 1/299 792 458 seconde.

Depuis mai 2019, les sept unités de base sont définies grâce à sept constantes fondamentales dont les valeurs
conventionnelles sont reconnues exactes par la communauté scientifique (cf Annexes).

III.3 - Grandeurs sans dimension
Il existe aussi des grandeurs sans dimension physique. Pour de telles grandeurs on a dim(G) ≡ 1. C’est le cas
par exemple de la densité qui est une grandeur définie comme le rapport de deux masses volumiques. La plupart
des grandeurs sans dimension n’ont pas d’unité (ou plutôt leur unité est le chiffre « 1 ») mais ce n’est pas le
cas de toutes : ainsi les angles plans sont définis comme le rapport de deux grandeurs de même dimension (la
longueur de l’arc de cercle engendré par l’angle divisée par la longueur du rayon) mais sont exprimés avec une
unité : le radian par exemple.

III.4 - Règles à respecter
Addition et soustraction toutes les grandeurs additionnées ou soustraites doivent-être homogènes entre
elles et le résultat de l’opération a la même dimension que chacun des termes.
Exemple : dim(x2 − x1) ≡ dim(x2) ≡ dim(x1).

Multiplication et division la dimension d’une grandeur qui est le produit, respectivement le quotient, de
deux autres grandeurs est le produit, respectivement le quotient des dimensions de ces grandeurs.
Exemple : dim

(
x2

x1

)
≡ dim(x2)

dim(x1)
.

Dérivation la dimension de la dérivée d’une grandeur est la dimension de la grandeur divisée par la variable
par rapport à laquelle on dérive.
Exemple : v(t) = x′(t) = ẋ(t) = dx

dt donc dim(v) = dim(x)
dim(t) ≡ L.T−1.

Intégration la dimension de l’intégrale ou de la primitive d’une grandeur est la dimension de la grandeur
multipliée par la variable par rapport à laquelle on intègre.
Exemple : x(t) =

∫
v(t)dt donc dim(x) = dim(v) dim(t) ≡ L.T−1.T ≡ L.
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Autres expressions si une expression ne peut pas être mise sous la forme d’additions, soustractions, mul-
tiplications, divisions, intégrations ou dérivations de grandeurs de dimensions connues, alors les grandeurs in-
tervenant dans l’expression doivent former un terme sans dimension et l’expression elle-même est alors sans
dimension.
Exemple 1 : l’expression cos(ω t). Pour que cette expression soit correcte il faut que dim(ω t) ≡ dim(ω)dim(t) ≡ 1
et donc dim(ω) ≡ 1

dim(t) . D’autre part, on aura toujours dim(cos(ω t)) ≡ 1.
Exemple 2 : soient ω1 et ω2 ayant une dimension identique et dim(ω1) ≡ dim(ω2) 6= 1. L’expression y =

log
(

ω1

ω2

)
est correcte en dimensions parce dim

((
ω1

ω2

))
≡ 1. En revanche écrire y = log(ω1)− log(ω2) est correct

mathématiquement mais pas acceptable physiquement car si on isole le terme log(ω1), il n’est pas possible de
lui attribuer un dimension physique respectant l’équation ??.

III.5 - Exemple de vérification d’homogénéité
On souhaite vérifier l’homogénéité de la formule ||~F || = m v2

R où ~F est un vecteur représentant une force,
m une masse, v une vitesse et R une longueur. Pour vérifier qu’un résultat est homogène en dimension, il
faut d’abord être capable d’exprimer la dimension physique de tous les termes qui composent ce résultat et
donc, dans notre exemple, notamment la dimension d’une force. Pour cela on s’appuie généralement sur des
lois ou des équations physiques bien connues. Par exemple, pour déterminer la dimension d’une force, on peut
se rappeler que la relation fondamentale de la dynamique permet d’écrire ||~F || = m ||~a||, ce qui mène à :
dim(||~F ||) ≡ dim(m)dim(||~a||). Compte tenu de dim(||~a||) ≡ L T−2, on a donc

dim(||~F ||) ≡ M L T−2

Ensuite, il est possible de vérifier que :

dim(m
v2

R
) ≡ dim(m)(dim(v))2

(dim(R))
et donc dim(m

v2

R
) ≡ M (LT−1)2

L ≡ M (LT−1)2 L−1 ou encore dim(m
v2

R
) ≡

M L2T−2L−1 ≡ M L T−2 ce qui prouve l’homogénéité de la formule étudiée.

IV - Consignes de résolution et de rédaction
On commence toujours par analyser les problèmes proposés :

— quelles sont les grandeurs citées dans l’énoncé ?
— quelles sont les grandeurs utiles pour compléter l’énoncé ?
— quelles sont leurs dimensions ?
— chaque grandeur a-t-elle une notation littérale ? si non, en attribuer une ;
— quelles lois/relations, quels modèles permettent de relier les unes aux autres ?

Il faut ensuite toujours mener le calcul de manière littérale aussi loin que possible (c’est-à-dire jus-
qu’à la réponse demandée !). Ne pas remplacer les grandeurs littérales par leurs valeurs numériques
avant d’avoir terminé le calcul. Avant de procéder à une application numérique, on doit pouvoir répondre
positivement à la question suivante :

« Dans l’expression littérale de mon résultat y a-t-il bien : à gauche la réponse à la question et à droite
uniquement des données de l’énoncé ou des données connues ? »

Si la réponse est non, le calcul littéral n’est pas terminé.
Si le calcul littéral est terminé, on procède ensuite systématiquement à une vérification de l’homogénéité de
votre résultat, en s’assurant que la dimension physique est la même à droite et à gauche de l’équation.
Une application numérique (qui est toujours précédée d’une réponse littérale), doit toujours mentionner une
unité (sauf mention particulière – « unité arbitraire » dans l’énoncé par exemple – et si la grandeur en a une,
évidemment).
Si le résultat littéral n’est pas présent, il est tributaire des données de l’énoncé et il est impossible de le généraliser
à d’autres situations similaires. De plus, seule cette expression littérale permet de vérifier, par un calcul aux
dimensions, que le résultat a un sens physique (même dimension des deux côtés du signe égalité notamment).
Une fois le résultat littéral vérifié, on réalise éventuellement l’application numérique, en la munissant d’une
unité. D’une manière générale, un résultat numérique sans unité sera compté faux.
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CT – Chapitre B

Chiffres significatifs

I - Chiffres significatifs
Les zéros situés à l’extrême gauche d’un nombre ou précédés uniquement d’autres zéros ne sont pas significatifs.
Tous les autres chiffres sont significatifs.
Exemples :

— 2,0 : deux chiffres significatifs,
— 0,020 = 2,0 · 10−2 : deux chiffres significatifs,
— 8300 = 8,300 · 103 : quatre chiffres significatifs,
— 0,7 : un chiffre significatif.

II - Arrondis
Compte tenu de ce qui précède, il convient de savoir adapter le nombre de chiffres significatifs d’un résultat
numérique, ce qui peut être fait par des méthodes d’arrondis.
Parmi les nombreuses méthodes d’arrondis possibles, on retiendra la méthode arithmétique ou encore « méthode
de l’arrondi au plus proche ». L’idée est de séparer les chiffres en deux paquets égaux de cinq valeurs {0, 1, 2, 3, 4}
d’une part et {5, 6, 7, 8, 9} d’autre part. On note le dernier chiffre significatif : s’il est suivi d’un chiffre strictement
inférieur à 5, on ne fait rien ; si le dernier chiffre significatif est suivi d’un chiffre supérieur ou égal à 5, on
l’augmente de 1.
Exemples : 1,501 s’arrondit à

— 1,50 à trois chiffres significatifs,
— 1,5 à deux chiffres significatifs,
— 2 à un chiffre significatif.

Exemples : 1,449 s’arrondit à
— 1,45 à trois chiffres significatifs,
— 1,4 à deux chiffres significatifs,
— 1 à un chiffre significatif.

Notons qu’il faut bien réfléchir avant de procéder à des arrondis successifs dans les calculs. Par exemple, si la
valeur de départ est 1,449 : si on arrondit d’abord à trois chiffres (1,449→1,45), puis qu’on arrondit à deux
chiffres (1,45→1,5), on commet une erreur d’arrondis successifs puisqu’on conclut que l’arrondi à deux chiffres
de 1,449 est 1,5, ce qui est faux. En effet l’arrondi à deux chiffres de 1,449 est 1,4.
On essaiera donc de n’arrondir que le résultat final d’un calcul, et d’éviter les calculs intermédiaires (d’où
l’intérêt de travailler en littéral). On notera enfin qu’il faut, évidemment, toujours calculer un chiffre de plus
que le nombre de chiffres de l’arrondi souhaité sinon il est impossible d’arrondir !
Autre erreur souvent commise : confondre arrondi et approximation. Par exemple, 0,9 est une valeur proche de
1. Mais l’arrondi à un chiffre de 0,9 est…0,9 puisque 0,9 n’a déjà qu’un seul chiffre significatif.
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III - Résultats des calculs numériques
On distingue les situations expérimentales directement liées à un résultat de mesurage (cf. chapitre ?? « Incerti-
tudes de mesure »), et les situations formelles ou abstraites pour lesquelles on ne dispose d’aucune information
quant aux incertitudes de mesure.

a - Calculs sans liens avec un résultat de mesurage
Les règles d’arrondis sont les suivantes :

— Dans les additions et soustractions, on conserve autant de décimales que la grandeur qui en a le moins.
Exemple : 3,0 - 0,45 = 2,55, arrondi à 2,6.

— Dans les divisions et multiplications, on conserve autant de chiffres significatifs que la grandeur qui en a
le moins. Exemple : 25, 42× 72, 5 = 1842, 95 arrondi à 184 · 101.

— Pour les grandeurs exprimées à l’aide d’un logarithme, « il y a autant de chiffres significatifs pour la valeur
que de chiffres significatifs après la virgule dans son logarithme ». Exemple : si on a pH = − log([H3O+]) =
8, 9, on lit que le logarithme de [H3O+] a une décimale et on retient que la valeur de [H3O+] s’écrit avec
un seul chiffre significatif : [H3O+] = 10−pH = 1,259 · 10−9 s’arrondit à [H3O+] = 1 · 10−9.

b - Calculs liés à un résultat de mesurage
C’est l’incertitude-type du mesurage qui permet de fixer le nombre de chiffres significatifs à conserver dans
l’expression de la valeur mesurée. Ce cas est traité à la section ??-??.
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CT – Chapitre C

Incertitudes de mesures

I - Introduction

I.1 - Vocabulaire
— Le processus ayant pour but d’évaluer expérimentalement une grandeur physique est appelé mesurage. Le

résultat du mesurage consiste en une valeur, ou un ensemble de valeurs, que l’on peut raisonnablement
attribuer à une grandeur. Pour comprendre le résultat du mesurage il faut préciser les conditions dans
lesquelles il a été effectué (protocole, matériel, paramètres importants (température, pression,…), etc.).

— La grandeur que l’on veut mesurer, accompagnée des conditions dans lesquelles le mesurage a été effectué,
est appelée le mesurande.

— La valeur mesurée est la valeur qu’on attribue à la grandeur mesurée à l’issue du mesurage.
— La science des mesurages et leurs applications est la métrologie.

I.2 - Variabilité des grandeurs physiques
D’une façon générale, en sciences expérimentales, toute évaluation expérimentale d’une grandeur est toujours
entaché d’une variabilité. Par exemple, dans le cas le plus général la répétition d’un même mesurage n’attribue
pas toujours la même valeur mesurée au mesurande.
Cette variabilité a de nombreuses origines : la méthode de mesure, les variations des conditions expérimentales,
les appareils de mesures utilisés, la nature même de certaines grandeurs et, bien sûr, le facteur humain, c’est-à-
dire la ou les personnes réalisant le mesurage.

I.3 - Histogrammes
Pour représenter graphiquement la variabilité d’une grandeur, on peut utiliser des histogrammes.
Soit une population {xi} de n valeurs attribuables à une même grandeur, l’idée est de ranger ces valeurs dans
des classes (c’est-à-dire des intervalles mutuellement exclusifs de largeur donnée) et de compter le nombres de
valeurs dans chaque classe.
Quelques définitions :

— étendue des observations : la valeur maximale moins la valeur minimale observée ;
— classe i : un des intervalles au sein desquels on compte le nombre d’observations ;
— l’étendue wi d’une classe i est la largeur de l’intervalle correspondant ; toutes les classes ont en général la

même étendue ;
— effectif ni : le nombre d’observations qui se trouvent dans la classe i ;
— fréquence fi = ni

n : la proportion des n observations qui se trouve dans la classe i.
Un histogramme consiste à représenter sur un graphique l’effectif (ou la fréquence) de chaque classe en ordonnée
et les classes en abscisse.

Avec python On utilise la fonction hist() de la bibliothèque de tracés de graphiques Matplotlib. On trouvera
un exemple sur https://www.physique.ptsi.prepa-dorian.fr

I.4 - Incertitude-type
Du fait de cette variabilité, la valeur ou l’ensemble de valeurs qu’on peut attribuer à un mesurande est toujours
incertain, et la façon de communiquer le résultat du mesurage doit refléter cette incertitude. L’incertitude est
un paramètre non négatif qui caractérise la dispersion des valeurs attribuées à un mesurande. Le consensus
scientifique recommande de la caractériser par un écart-type et on appelle alors cette caractérisation une
incertitude-type.
Remarque : une incertitude-type est souvent notée u, d’après le mot anglais « uncertainty ».
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Le résultat d’un mesurage n’est jamais simplement une valeur unique. Il s’agit le plus souvent d’une estimation
de la valeur de la grandeur, accompagnée d’une incertitude-type caractérisant la variabilité de la grandeur
mesurée ainsi que les conditions dans lesquelles il a été effectué.

Rédaction : on réalise le mesurage d’une grandeur X ; on détermine une estimation x de la valeur du mesurande
associée à une incertitude-type u(x) dans les conditions du mesurage. Le résultat du mesurage sera rédigé ainsi :

Mesure de X : ( x ; u(x)) avec le matériel {…} et dans telles et telles conditions.

II - Détermination de l’incertitude-type
Selon qu’on peut, ou non, observer directement la variabilité de la grandeur, il existe deux types d’évaluation
de l’incertitude-type.

II.1 - Variabilité observée – Type A
a - Définition
La détermination de type A d’une incertitude-type peut être effectuée lorsqu’une série de mesures est réalisée
dans les mêmes conditions mais donnent des résultats variables. On la réalise grâce à une analyse statistique
des valeurs obtenues.

b - Incertitude-type d’une valeur (ou écart-type échantillonnal)
Si on note {xi} l’ensemble des n valeurs attribuables à la grandeur, l’incertitude-type associée à une valeur
quelconque xi est :

∀i ∈ J0, (n− 1)K, u(xi) =
√

1

n− 1

√√√√n−1∑
k=0

(xk − x̄)2

où x̄ est la valeur moyenne de toutes les valeurs, c’est-à-dire x̄ =
1

n

n−1∑
k=0

xk.

Il est important de noter que l’évaluation de l’incertitude-type se faisant grâce à l’ensemble des valeurs, elle est
identique pour toutes les valeurs.

Exemple 1 On réalise n = 6 mesurages de la pesanteur g, dont les résultats {gi} sont les suivants (en m s−2) :
9,68 ; 9,85 ; 9,85 ; 9,77 ; 9,87 ; 9,79.

PTSI – Lycée Dorian 7 2025-2026



Compétences transverses CT–C Incertitudes de mesures

Principes du calcul On a donc, d’après ce qui précède :

ḡ =
9, 68 + 9, 85 + 9, 85 + 9, 77 + 9, 87 + 9, 79

6
= 9,8017m s−2

∀i, u(gi) =
√

1

5

√√√√ n∑
k=1

(gk − ḡ)2 = 0,0711m s−2

Avec un tableur u(xi) est l’écart-type expérimental ou échantillonnal ; c’est l’écart-type facilement calculé
grâce à un tableur. Avec Excel, OpenOffice ou LibreOffice, la fonction à utiliser est ECARTYPE(liste des
données).

Avec python On utilise la fonction std() de la bibliothèque de calculs numériques NumPy. On trouvera un
exemple sur https://www.physique.ptsi.prepa-dorian.fr

c - Incertitude-type de la valeur moyenne
Lorsqu’on dispose de plusieurs mesures indépendantes de la même grandeur, il est intéressant d’utiliser la valeur
moyenne car l’incertitude-type sur la moyenne est toujours plus faible que celle sur une valeur particulière. En
effet, on a :

u(x̄) =
u(xi)√
n

=
1√
n

√
1

n− 1

√√√√n−1∑
k=0

(xk − x̄)2 (C.1)

Exemple 1 On reprend l’exemple du ??. Il suffit de diviser l’écart-type échantillonnal par
√
6.

u(ḡ) =
0,0711m s−2

√
6

= 0,0290m s−2

Pour obtenir la racine carrée, avec Excel ou LibreOffice, la fonction à utiliser est RACINE(), par exemple
(RACINE(6)) Avec python, on utilise la fonction sqrt() de la bibliothèque de calculs numériques NumPy,
par exemple (np.sqrt(6)).

II.2 - Absence de variabilité observée – Type B
a - Définition
Il s’agit de l’évaluation de l’incertitude-type par d’autres moyens que l’analyse statistique d’une série de mesures.
En effet, dans de nombreuses situations, il n’est pas souhaitable ou pas possible de réaliser de nombreuses
mesures 1 ou bien la résolution des appareils utilisés n’est pas suffisante pour que les différentes mesures donnent
des valeurs différentes malgré la variabilité de la grandeur.
Une autre situation très courante en sciences est celle où on réutilise des résultats d’un autre mesurage sans
avoir accès l’ensemble des mesures effectuées ni toutes les informations nécessaires à l’étude statistique.
Il faut alors faire des hypothèses sur le processus de mesurage et modéliser la dispersion des valeurs raisonna-
blement attribuables au mesurande de façon à pouvoir simuler mathématiquement la variabilité de la grandeur.

1. Problème de temps ou de coût par exemple.
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On s’appuie au maximum sur les informations diverses sur la méthode de mesure (résultats de mesures anté-
rieures, spécifications des fabricants, notices des appareils de mesures, incertitudes fournies dans des ouvrages
ou manuels, etc.) ou bien on formule des hypothèses qu’on explicite.
La détermination rigoureuse de l’incertitude-type de type B peut être très complexe et faire appel à des théories
probabilistes très largement hors programme en CPGE. On se contentera donc de trois exemples qui couvrent
la quasi-totalité des cas rencontrés dans l’enseignement scolaire :

— estimation grâce à un intervalle associé un modèle :
— rectangulaire ;
— triangulaire ;

— estimation par une loi normale (ou gaussienne).

b - Estimation grâce à un intervalle

Figure C.1 – Distributions de densité de probabilité de présence associées aux deux modèles d’incertitudes-types de
type B estimées par un intervalle.

On estime que les valeurs raisonnablement attribuables au mesurande se trouvent à l’intérieur d’un intervalle
[x1, x2] de bornes inférieure x1 et supérieure x2. On appelle « étendue » la largeur de l’intervalle x2 − x1
et « demi-étendue » la grandeur x2−x1

2 . C’est le cas le plus courant, il correspond aux situations pratiques
suivantes :

— on a mesuré x1 et x2 et on considère qu’elles sont des bornes raisonnables ou bien on a directement
déterminé le minimum x1 et le maximum x2 des valeurs attribuables au mesurande ;

— on a mesuré une valeur x avec un appareil à affichage numérique dont la résolution est r : l’intervalle de
mesure est alors [x− r

2 , x+ r
2 ] et la résolution de l’appareil est égale à l’étendue ; on a x2 − x1 = r ;

— on a mesuré une valeur x et on se réfère à une notice d’appareils ou à des données constructeurs qui
spécifient une « précision » p sur la grandeur mesurée, sans plus explications : on considère alors la valeur
p donnée comme étant la demi-étendue de la mesure ; on a x2 − x1 = 2p.

Il faut ensuite modéliser la variabilité de la grandeur.

Modèle rectangulaire Il suppose que si on réalisait de nombreuses mesures, alors les valeurs mesurées se
répartiraient dans l’intervalle selon une distribution de probabilité uniforme, c’est-à-dire que toutes les valeurs
de l’intervalle sont équiprobables. L’incertitude-type associée au mesurage est alors

u =
x2 − x1

2
√
3

C’est un modèle peu optimiste parce qu’il suppose que la seule chose qu’on peut dire est que la valeur est dans
un intervalle donné. En revanche, si l’évaluation de l’intervalle est bien faite, c’est un modèle très robuste car
on ne prend pas beaucoup de « risques » dans les hypothèses formulées.
Exemples :

— On mesure la position d’un trait avec une règle graduée au millimètre. Lors du mesurage, le trait est
positionné entre les graduations 6 et 7. Si on estime qu’il est raisonnable de penser que n’importe quelle
valeur entre les deux graduations est attribuable à la valeur mesurée de façon équiprobable, alors l’intervalle
de mesure est [x1 = 6mm, x2 = 7mm], l’étendue est égale à la valeur d’une graduation de la règle et
l’incertitude-type a pour valeur u = x2−x1

2
√
3

= 1 graduation
2
√
3

= 1 mm
2
√
3

.
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— On mesure une masse à l’aide d’une balance numérique. Le dernier chiffre de l’afficheur correspond à
l’affichage des dixièmes de gramme. La résolution est donc 0,1 g. L’appareil affiche m = 4,2 g. Compte tenu
de la résolution de l’appareil, on peut juste dire que la valeur mesurée est entre m1 = 4,15 g et m2 = 4,25 g.
L’étendue est alors égale à la résolution et l’incertitude-type a pour valeur u(m) = m2−m1

2
√
3

= 0,1 g
2
√
3

.
— On mesure une tension électrique à l’aide d’un capteur qui indique U = 12V et dont la notice spécifie :

« précision : 2% ». On a donc une « précision » constructeur de 2
100 × U = 0, 02 × 12V = 0,24V. On

considère alors que l’intervalle de mesure est [U1 = 11,76V, U2 = 12,24V]. La demi-étendue est alors égale
à la « précision » et l’incertitude-type a pour valeur u(U) = x2−x1

2
√
3

= 0,24 V√
3

.

Modèle triangulaire Dans ce cas, on considère que les valeurs vers le centre de l’intervalle sont plus probables
que celles vers les bords, que la valeur centrale est la plus probable et que les valeurs aux extrémités de l’intervalle
sont extrêmement improbables. L’incertitude-type associée est

u =
x2 − x1

2
√
6

On remarque que pour une même étendue de mesure, l’incertitude-type est plus faible que dans le modèle
rectangulaire. C’est donc un modèle plus optimiste mais il demande de faire des hypothèses plus nombreuses et
donc d’analyser le mesurage de façon plus poussée pour s’assurer que les hypothèses sont raisonnables.
Exemples :

— On mesure la position d’un trait avec une règle graduée au centimètre. Lors du mesurage, le trait est
positionné sur la graduation 8. On peut encore estimer que l’étendue est égale à la valeur d’une graduation
de la règle, c’est-à-dire que l’intervalle de mesure est [x1 = 7,5 cm, x2 = 8,5 cm] mais que parmi toutes
les valeurs de l’intervalle la valeur correspondant à la graduation 8 est plus probable que les autres et
que les valeurs 7,5 cm et 8,5 cm sont extrêmement improbables. Si on est d’accord avec ce modèle, alors
l’incertitude-type est u = x2−x1

2
√
6

= 1 cm
2
√
6

.
Remarque : on peut aussi conserver le modèle rectangulaire mais en supposant que l’étendue de l’intervalle
est plus petite qu’une graduation parce qu’on est confiant dans le fait que les valeurs attribuables sont peu
dispersées autour de la graduation. Le plus important n’est pas la valeur finale de l’incertitude-type mais
plutôt de toujours expliciter le modèle qu’on a choisi de façon que les résultats soient compréhensibles.

— On mesure un volume de liquide avec une fiole jaugée de classe A sur laquelle est indiquée la mention
suivante : « ±0,05mL ». On considère souvent que l’étendue est 0,1mL (c’est-à-dire que ce qui est indiqué
est la « précision » égale à la demi-étendue). Comme il s’agit d’une verrerie de qualité (classe A), si la
fiole est propre et en bon état et que la manipulation est effectuée correctement alors une modélisation
triangulaire peut apparaître raisonnable, et on aura donc u = 0,1 mL

2
√
6

= 0,05 mL√
6

. Si on n’a pas confiance
dans le matériel, ou dans la personne qui manipule, il est alors plus raisonnable de choisir une modélisation
rectangulaire…

c - Estimation grâce à une loi normale (modèle gaussien)
On utilise ce modèle quand on estime que les valeurs raisonnablement attribuables à la grandeur mesurée suivent
une loi normale dont on connaît l’espérance µ et la variance V .
Dans ce cas, l’incertitude-type est égale à l’écart-type de la distribution, c’est-à-dire la racine carrée de la
variance : u =

√
V .

On réserve cette modélisation à des situations où une analyse statistique complète a déjà été menée, prouvant
que la densité de probabilité des valeurs est gaussienne. Concrètement, cette analyse ne peut pas être réalisée en
travaux pratiques de CPGE et on n’exploitera le modèle gaussien que lorsque l’énoncé nous demande d’admettre
sa validité ou bien lorsqu’on réutilise des résultats de mesurage analysés comme étant gaussiens (publications
de recherches scientifiques, certificats officiels d’étalonnage d’appareils de mesure, etc.).

Incertitude élargie, niveau de confiance Si M est la grandeur mesurée, l’incertitude-type élargie (notée
∆M) est une grandeur définissant un intervalle autour de l’espérance µ associé à un « niveau de confiance ».
Par exemple, un niveau de confiance de 95% signifie que si on procède de mesurages successifs indépendants
réalisés dans les mêmes conditions, la probabilité d’obtenir une valeur mesurée dans l’intervalle est égale à 0,95.
Cette incertitude-type élargie est l’incertitude-type définie précédemment multipliée par un facteur d’élargisse-
ment k. On aura donc

∆M = k u(M) associé à un niveau de confiance
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L’intervalle de confiance est alors

[µ−∆M ; µ+∆M ] associé à un niveau de confiance

La détermination de la valeur de k associée à un niveau de confiance peut être très compliquée et le facteur
d’élargissement sera souvent donné dans l’énoncé ou accessible par une table (voir table ??) ou calculé grâce à
un logiciel.
On peut néanmoins retenir que, dans un grand nombre de situations expérimentales rencontrées dans de nom-
breux domaines, la valeur k = 2 est associée à un niveau de confiance de 95%.

III - Détermination de la valeur mesurée

III.1 - Définition
À la fin du processus de mesurage, en plus de l’incertitude-type, on peut déterminer la valeur mesurée, c’est-
à-dire la valeur attribuable au mesurande dont on estime qu’elle représente bien la grandeur mesurée dans les
conditions de l’expérience.

III.2 - Estimateurs
Si on dispose de plusieurs valeurs alors le meilleur estimateur de la valeur mesurée est la valeur moyenne
de ces valeurs, c’est-à-dire

x̄ =

n−1∑
i=0

xi

n

Si on dispose d’un intervalle de mesure alors un très bon estimateur de la valeur mesurée est la valeur
centrale de l’intervalle, c’est-à-dire la moyenne des bornes de l’intervalle, donc pour l’intervalle [x1 ; x2] :

x̄ =
x2 − x1

2

Si les valeurs suivent une loi normale d’espérance µ alors le meilleur estimateur est l’espérance et
x̄ = µ.

Exemple 1 On reprend l’exemple de la section sur les incertitudes de type A. Le meilleur estimateur est la
moyenne ḡ = 9,8017m s−2.

IV - Incertitude-type composée
Lorsque que la valeur d’une grandeur G est déterminée indirectement grâce à des mesures de plusieurs autres
grandeurs, l’incertitude-type sur le mesurande G dépend des incertitudes-types sur les autres grandeurs. On
parle de propagation des incertitudes et les grandeurs ayant servi à déterminer G sont appelées grandeurs
d’influence ou grandeurs d’entrée.
Dans les cas où les grandeurs sont additionnées, soustraites, multipliées ou divisées, les résultats ci-dessous sont
admis et doivent être connus. Dans un cas général plus complexe, un logiciel sera utilisé et seul le principe du
calcul doit être compris.

IV.1 - Combinaison linéaire
Soit G = α1E1 + α2E2, avec E1 et E2 les grandeurs d’entrée et α1 et α2 deux constantes 1 réelles quelconques.
L’incertitude-type composée sur G, notée uc(G) est donnée par :

1. Il faut ici comprendre le terme « constante » comme un nombre dont la variabilité est nulle ou tellement faible qu’on peut la
négliger devant la variabilité des autres grandeurs de l’expression.
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uc(G) =

√
(α1u(E1))

2
+ (α2u(E2))

2

IV.2 - Produits et quotients
Soit G = aEα1

1 Eα2
2 , avec a une constante réelle non-nulle et α1 et α2 deux constantes réelles quelconques.

L’incertitude-type composée sur G, notée uc(G) est donnée par :

uc(G) = |G|

√(
α1
u(E1)

E1

)2

+

(
α2
u(E2)

E2

)2

IV.3 - Autres situations
Quand la relation entre le mesurande et les grandeurs d’entrée ne peut pas être mise sous une des formes
précédentes, les propagations d’incertitudes deviennent extrêmement compliquées. Dans ce cas, on n’utilise plus
de formule de propagation d’incertitudes mais des algorithmes qui permettent de simuler l’effet de la variabilité
des grandeurs d’entrée sur la variabilité de la grandeur de sortie. En CPGE, on utilise la méthode de Monte
Carlo qui consiste à simuler des valeurs aléatoires des grandeurs d’entrée cohérentes avec leurs étendues et
incertitudes-types puis à en déduire la variabilité du mesurande recherchée.
Cette méthode sera détaillée plus tard dans le cours.

IV.4 - Comparaison des contributions à la variance
Soit G une grandeur déterminée indirectement grâce aux mesurages de deux grandeurs d’entrée E1 et E2. Pour
évaluer la contribution de chacune des grandeurs d’entrée à la variance de G, on identifie les coefficients C1 et
C2 tels que

u2c(G) = C2
1u

2(E1) + C2
2u

2(E2)

La contribution à la variance de E1 est alors le rapport suivant :

CV (E1) =
C2

1u
2(E1)

u2c(G)

Celle de E2 :

CV (E2) =
C2

2u
2(E2)

u2c(G)

On exprime généralement ces contributions par un pourcentage et, bien sûr, CV (E1) + CV (E2) = 100%.
Il n’est pas difficile de généraliser la discussion aux cas où plus de deux grandeurs d’influence sont en jeu.

IV.5 - Exemple
Exemple 2 On mesure aux bornes d’un résistor de résistance R inconnue une tension U = 1,00V avec une
incertitude-type u(U) = 0,06V et une intensité de courant électrique I = 1,057·10−4 A avec une incertitude-type
u(I) = 0,0003mA. Pour déterminer R on suppose vérifiée la relation R = U

I . Les grandeurs d’influence sont
donc U et I et les incertitudes-types sur leurs mesures respectives permettent de déterminer l’incertitude-type
composée sur R. On a :

R =
U

I
=

1,00V
1,057 · 10−4 A

= 9460,737 938Ω = 9,461 kΩ

et

uc(R) = R

√(
u(U)

U

)2

+

(
u(I)

I

)2

ce qui donne une incertitude-type composée

uc(R) = 9,4607 kΩ×

√(
0,06V
1,00V

)2

+

(
3 · 10−7 A

1,057 · 10−4 A

)2

= 568,28Ω
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Bien entendu, le nombre de chiffres significatifs est irréaliste et, dans la présentation des résultats, il conviendra
d’appliquer des règles d’arrondis qui seront vues en détails à la section ?? « Écriture des résultats du mesurage ».

Pour évaluer les influences respectives de U et I dans la variance de R, on remarque que

u2c(R) =
R2

U2
u2(U) +

R2

I2
u2(I)

ce qui permet d’identifier les contributions à la variance de U

CV (U) =
R2

U2

u2(U)

u2c(R)
=

(
9,461 · 103 Ω

1,00V
0,06V
568,28Ω

)2

= 99,78%

et de I

CV (I) =
R2

I2
u2(I)

u2c(R)
=

(
9,461 · 103 Ω
1,057 · 10−4 A

0,0003 · 10−3 A
568,28Ω

)2

= 0,22%

Ainsi, dans notre exemple, la quasi-totalité de la variabilité de la résistance est due à la variabilité de la tension.
Pour améliorer le processus de mesurage et réduire l’incertitude-type sur la résistance, les efforts doivent en
priorité porter sur la façon dont est mesurée la tension.

V - Compatibilité de deux valeurs

V.1 - Écart normalisé ou z-score
Il est parfois utiles de comparer deux valeurs d’une même grandeur mesurées par des techniques ou des personnes
différentes. Il est nécessaire pour cela d’utiliser un critère quantitatif permettant de répondre à la question «
les deux valeurs mesurées sont-elles compatibles entre elles ? ». Il s’agit en fait de déterminer si l’écart entre les
deux valeurs mesurées peut raisonnablement s’expliquer par la variabilité des grandeurs physiques : si l’écart
est trop important par rapport aux incertitudes-types, on est amené à rejeter l’hypothèse que les résultats sont
compatibles entre eux.
On utilise comme critère l’écart normalisé Z. Soient deux résultats de mesures de la même grandeur, x1;u(x1)
et x2;u(x2), leur écart normalisé est :

Z(x1, x2) =
|x1 − x2|√

u(x1)2 + u(x2)2
(C.2)

Du fait de sa notation, l’écart normalisé est aussi parfois appelé « z-score ».

V.2 - Compatibilité entre deux valeurs mesurées
On retient comme critère de compatibilité une valeur de l’écart normalisé inférieure à 2.
Si Z & 2, on rejette a priori l’hypothèse de compatibilité et les deux mesures sont déclarées
incompatibles.
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Figure C.2 – Visualisations à l’aide d’histogramme de comparaisons entre valeurs mesurées. On a représenté les histo-
grammes, les valeurs moyennes ainsi que les limites des intervalles à plus ou moins un écart-type.
À gauche : valeurs compatibles (Z < 2). Au centre : valeurs à la limite de compatibilité (Z = 2). À droite :
valeurs non compatibles (Z > 2).

V.3 - Compatibilité entre une valeur mesurée et une valeur de référence
Parfois, on est amené à évaluer la compatibilité d’une valeur mesurée avec une valeur de référence, c’est-à-
dire une valeur dont l’incertitude est supposée très faible comparée celle de la valeur mesurée qu’on cherche à
commenter. La valeur de référence peut par exemple être :

— issue d’une publication scientifique suite à une manipulation de très grande précision ;
— déterminée grâce à un modèle dont on connaît très bien les paramètres ;
— une valeur conventionnelle admise par la communauté scientifique comme c’est le cas pour les constantes

fondamentales du système international d’unité, dont les valeurs sont supposées exactes, ou les autres
constantes de la physique.

Soit x la valeur mesurée à commenter et xref la valeur de référence. Comme on suppose que u(xref ) � u(x),
l’expression ?? de l’écart normalisé devient :

Z(x, xref ) ≈
|x− xref |√

u(x)2
=

|x− xref |
|u(x)|

(C.3)

Là encore, on retient comme critère de compatibilité une valeur de l’écart normalisé inférieure à 2. Si Z & 2, on
rejette a priori l’hypothèse de compatibilité.

V.4 - Analyses des incompatibilités
Si l’écart normalisé est inférieur à 2, alors les valeurs sont compatibles entre elles. Si ce n’est pas le cas, il faut
essayer de comprendre pourquoi. Il y a plusieurs pistes de réflexion :
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— les valeurs n’ont peut-être pas été obtenues dans des conditions suffisamment proches : il faut réfléchir
aux processus de mesurage ;

— le modèle auquel on compare la valeur mesurée est peut-être à revoir ;
— les incertitudes-types des valeurs comparées ont peut-être été sous-estimées, rendant l’écart normalisé

artificiellement élevé.

VI - Écriture des résultats du mesurage
Une fois l’incertitude-type1 et la valeur mesurée déterminés, on peut écrire le résultat du mesurage. On doit
s’appuyer sur l’incertitude-type1 pour déterminer le bon nombre de chiffres significatifs de la
valeur mesurée. Règles sur les chiffres significatifs :

— On écrit l’incertitude-type1 avec deux chiffres significatifs.
— On écrit la valeur mesurée et l’incertitude-type1 en utilisant la même unité et, le cas échéant, la même

puissance de 10.
— On identifie la valeur qu’aurait un chiffre 1 placé en dernière position dans l’écriture de l’incertitude-type1.
— On arrondit la valeur mesurée de façon qu’un chiffre 1 placé en dernière position dans son écriture ait la

même valeur que celle décrite à l’étape précédente.
Le résultat s’écrit :

x = (x̄ ; u(x)) unités

Exemple 1 On reprend l’exemple des mesures de pesanteur. On a obtenu : une valeur mesurée ḡ = 9,8017m s−2,
une incertitude-type u(ḡ) = 0,0290m s−2. On commence par arrondir l’incertitude-type à deux chiffres : u(ḡ) =
0,029m s−2. Les deux grandeurs sont bien écrites dans la même unité avec la même puissance de dix. Le dernier
chiffre de l’incertitude-type est en position des millièmes de m s−2. On arrondit donc la valeur mesurée pour que
son dernier chiffre soit également en position des millièmes de m s−2. Cela donne ḡ = 9,802m s−2. Le résultat
du mesurage s’écrit :

g = (9, 802 ; 0, 029) m s−2

Exemple 2 On reprend l’exemple de la mesure de résistance. On a obtenu : une valeur mesurée R = 9,461 kΩ,
une incertitude-type u(R) = 568Ω. On l’arrondit à deux chiffres : u(R) = 57 ·102 Ω. On réécrit cette incertitude-
type avec la même unité et la même puissance de 10 que la valeur mesurée, c’est-à-dire u(R) = 0,57 kΩ. Le
dernier chiffre de cette incertitude-type porte sur les centièmes de kΩ. On arrondit donc R en conséquence :
R = 9,46 kΩ. Le résultat du mesurage s’écrit :

R = (9, 46 ; 0, 57) kΩ

On aurait pu aussi choisir d’écrire toutes les grandeurs en ohms. On aurait alors eu :
ou

R = (9, 46 ; 0, 57)× 103 Ω

1. Ou l’incertitude-type élargie associée à un niveau de confiance dans le cas de la modélisation gaussienne.
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CT – Chapitre D
Travaux pratiques et activités

expérimentales

I - Introduction
Vos fascicules et énoncés de TP sont explicites et détaillés. Il est impossible en Classe préparatoire de distinguer
les TP du Cours. En Chimie comme en Physique, des parties entières du programme ne seront abordées qu’à
travers les TP. Faire l’impasse sur ces derniers constitue donc une grave erreur, que ce soit pour les écrits ou
pour l’oral du concours. Lisez les énoncés et travaillez-les entièrement impérativement avant la séance.
Un certain nombre de questions théoriques sont posées tout au long de l’énoncé de manière à ce que vous puissiez
profiter pleinement des séances : ces questions doivent absolument être traitées avant la séance. Dans
le cas contraire, vous n’aurez pas le temps de terminer ni de vous assurer que vous avez correctement mené vos
expériences, d’autant plus que beaucoup de ces TP sont longs. Une vérification des préparations sera effectuée
au début de chaque séance.

II - Le cahier de laboratoire
Il s’agit d’une pochette ou d’un classeur personnel, format A4, à conserver jusqu’au concours et dans lequel :

— on archive l’ensemble des énoncés de TP, les notices, les courbes imprimées,
— on note tous les résultats expérimentaux obtenus (tableaux de valeurs, mesures, conclusions) ainsi que

toutes les informations utiles pour retrouver ces résultats expérimentaux (formules, schémas de montage,
conditions expérimentales),

— on rédige les parties théoriques qui correspondent au travail expérimental ainsi que le cours dispensé au
tableau par le professeur pendant la séance de TP.

III - Les comptes-rendus
Un certain nombre de TP donneront lieu à la rédaction d’un compte-rendu noté.

III.1 - Rédaction
Concernant la rédaction, d’une manière générale, la concision, la clarté de la rédaction (forme et fond),
la correction du français utilisé (dont l’orthographe) feront partie de la notation. Il est inutile de recopier
l’énoncé de TP ! Contentez-vous de répondre clairement aux questions posées. Dans le même ordre d’idée, limitez
l’emploi d’applications informatiques au strict nécessaire : mal maîtrisées, elles conduisent à des comptes rendus
catastrophiques.
Pensez toujours à numéroter vos réponses sur votre copie, exactement de la même façon que les questions le
sont dans l’énoncé, en répétant toutes les numérotations.

III.2 - Délai et notation
Vous disposez d’une semaine pour rédiger le compte-rendu. Tout retard entraîne une note divisée par
2. Un retard d’une semaine ou plus entraîne la note 0.
La copie doit mentionner les noms et prénoms de chacun des élèves du groupe de TP.
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IV - Les graphiques
Vous devez particulièrement les soigner. Un compte-rendu ne peut pas avoir la moyenne si ses graphiques
ne respectent pas les prescriptions suivantes :

— si la courbe est manuelle, utilisation de papier millimétré ou semi-log pour toutes les courbes expéri-
mentales.

Dans tous les cas :
— tableau résumant les valeurs reportées sur le graphique, avec leurs unités, donné sur (ou au verso de) la

feuille utilisée,
— axes tracés à la règle et portant les noms des grandeurs représentées et leurs unités,
— échelle rappelant la conversion unité de longueur sur le graphique – unité de mesure,
— titre identifiant l’expérience qui a été menée ou explicitant la courbe représentée.

Il est de plus absolument nécessaire d’exploiter les renseignements expérimentaux fournis par les
graphiques. Par exemple, il est intéressant de fournir avec le graphique :

— la paramètres des modèles utilisés ou ajustés,
— les barres d’incertitudes expérimentales si on les connaît,
— les asymptotes des courbes et leurs pentes,
— les tangentes à l’origine et leurs pentes,
— les points particuliers (maximum, minimum, point d’inflexion, volume équivalent de dosage, fréquence

de coupure etc.),
— les valeurs remarquables (intersection avec les axes par exemple).

À ces considérations générales s’ajoutent :
— une utilisation maximale de la surface de la feuille utilisée, pour la lisibilité ; ceci suppose notamment une

réflexion sur la partie utile de vos mesures…
— si vous avez plusieurs courbes sur un même graphique ajoutez une légende identifiant chacune des courbes,
— si vous trouvez que les valeurs numériques ne sont pas faciles à écrire sur vos axes, ou dans vos tableaux,

utilisez des divisions ou des multiples de l’unité ; dans le cas où l’unité est imposée, ou sans divisions ou
multiples connus, procédez comme dans l’exemple qui suit,

— si une courbe manuelle est demandée, vous ne pouvez pas la remplacer par une courbe tracée informati-
quement.

Pour un exemple, reportez-vous à la figure ??.

V - Tableau de valeurs numériques
Si vos données sont les suivantes :

I (A) 0,00011 0,00012 0,00009
U (V) 0,002 0,003 0,001

Il est parfois commode de les réécrire afin de ne pas surcharger le tableau avec des zéros n’apportant aucune
information. Il y a deux solutions : un changement d’unité d’expression (mV au lieu de V par exemple) ou la
multiplication de la grandeur par une puissance de 10 adéquate. Par exemple si

I = 0,000 11A = 11 · 10−5 A

alors
10+5 × I = 11A

Vous pouvez alors remplacez les grandeurs du tableau précédent par :

10+5 × I (A) 11 12 9
U (mV) 2 3 1

La grandeur sur l’axe est alors 10+5 × I exprimée en ampères.
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Figure D.1 – 1.Titre explicite décrivant la courbe, 2. axes orientés avec mention de la grandeur sur l’axe et le cas
échéant son unité, 3. échelle numérique avec les unités, 4. tableau de valeurs complet avec les unités :
ce tableau peut être placé au dos de la courbe, 5. points repérés de façon visible, 6. graduations sur les
axes et valeurs intermédiaires pour faciliter la lecture, 7. calculs importants effectués en relation avec la
courbe : ici pente et ordonnée à l’origine issues d’une régression linéaire, 8. incertitudes-types sur la pente
et l’ordonnée à l’origine, 9. courbe moyenne tracée en relation avec l’allure attendue : ici on s’attend à
une droite, on trace donc la droite la plus proche possible de tous les points (on peut, dans notre exemple,
utiliser l’équation donnée par la régression linéaire).

PTSI – Lycée Dorian 18 2025-2026



CT – Chapitre E
Ajustements de modèles et
comparaisons aux mesures

I - Introduction
On distingue principalement deux types d’études expérimentales de modèles, qui parfois se complètent :

— si on ne connaît pas les paramètres du modèle, on réalise un ajustement pour déterminer les valeurs des
paramètres du modèle qui mènent aux prévisions les plus proches possibles des valeurs mesurées ;

— une fois le modèle paramétré, on étudie sa compatibilité avec les mesures.

II - Ajustements de modèles
Un ajustement de modèle consiste à déterminer les valeurs des paramètres du modèle qui mènent aux prévisions
les plus proches possibles des valeurs mesures. Les algorithmes d’ajustement sont très nombreux et parfois
extrêmement compliqués, il ne s’agit pas de les étudier mais uniquement de les utiliser. À titre culturel, on
peut néanmoins citer l’ajustement par la méthode des moindres carrés 1, d’importance historique et encore très
largement utilisé.

II.1 - Ajustements linéaires
Si on suppose que la relation entre les grandeurs y et x est de la forme y = px c’est-à-dire une relation linéaire,
p est le seul paramètre du modèle. L’ajustement consiste à déterminer grâce aux valeurs mesurées {xi} et {yi}
la meilleure estimation expérimentale de p qu’on pourra noter p̄.

a - Méthode 1
Étant donné que le modèle suppose ∀x 6= 0, p = y

x , il suffit dans ce cas de déterminer toutes les valeurs pi = yi

xi

pour xi 6= 0 puis d’en faire la moyenne. Si on dipose de n mesures, on aura alors

p̄ =

n−1∑
i=0

pi

n
=

n−1∑
i=0

yi
xi

n

Ces calculs se réalisent facilement avec un tableur ou avec python.

b - Méthode 2
On peut effectuer une régression linéaire, qui ajuste par la méthode moindres carrés la meilleure estimation de
la valeur de la pente compte tenu des données expérimentales.

Avec un tableur Avec Excel ou LibreOffice, la fonction à utiliser est DROITEREG. La façon pratique d’utiliser
cette fonction est détaillée sur une feuille de calcul disponible sur le wiki de la physique. On se contente ici de
donner les syntaxes utiles pour une régression linéaire :

DROITEREG(donnéesY ; donnéesX ; 0 ; 1)

Il n’y a pas de fonctions python simples permettant de réaliser l’équivalent de cette régression linéaire.

1. https://fr.wikipedia.org/wiki/Méthode_des_moindres_carrés
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Compétences transverses CT–E Comparaison à un modèle

II.2 - Ajustements affines
Une régression affine est un ajustement pour lequel on suppose que la relation entre les grandeurs y et x est
de la forme y = px+ b c’est-à-dire un polynôme d’ordre 1. p et b sont les paramètres du modèle. L’ajustement
consiste à déterminer grâce aux valeurs mesurées {xi} et {yi} les meilleures estimations expérimentales de p et
b, qu’on pourra noter p̄ et b̄. Attention, la plupart du temps, les notices, logiciels, livres, etc. appellent par abus
de langage ce type d’ajustement « régression linéaire »… bien qu’il s’agisse d’un ajustement affine.

Avec un tableur Avec Excel ou LibreOffice, la fonction à utiliser est DROITEREG. La façon pratique d’utiliser
cette fonction est détaillée sur une feuille de calcul disponible sur le wiki de la physique. On se contente ici de
donner les syntaxes utiles pour une régression affine :

DROITEREG(donnéesY ; donnéesX ; 1 ; 1)

Remarque : on peut également obtenir des données similaires à partir d’une courbe, en ajoutant une « courbe
de tendance » mais on n’a alors pas accès à tous les résultats statistiques utiles.

Avec python Pour obtenir une régression affine, on utilise la fonction polyfit() de la bibliothèque de calculs
numériques NumPy. On trouvera un exemple sur https://www.physique.ptsi.prepa-dorian.fr

Figure E.1 – Une courbe expérimentale et une possibilité de modèle des données expérimentales ajusté par régression
affine.

II.3 - Autres ajustements
D’autres types d’ajustements qu’affines ou linéaires sont bien entendu possibles. Notamment, il est possible de
faire des ajustements avec des polynômes de n’importe quel ordre grâce à la fonction polyfit() de bibliothèque
de calculs numériques NumPy.
Des ajustements avec des fonctions quelconques peuvent être obtenus grâce à la fonction curve_fit() de la
bibliothèque scientifique SciPy Optimize.
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III - Comparaison modèles-mesures
Une fois qu’on dispose d’un modèle paramétré, il faut évaluer sa compatibilité avec les mesures. Deux outils
permettent d’étudier graphiquement cette compatibilité :

— les barres d’incertitudes ;
— les résidus normalisés.

III.1 - Barres d’incertitudes
Pour une valeur mesurée yi, les barres d’incertitudes sont la représentation graphique des intervalles [yi −
2u(yi); yi + 2u(yi)], c’est-à-dire des segments de longueurs 4u(yi) centrées sur yi. On trace ensuite la courbe
des valeurs mesurées munis de ces barres : cela permet de visualiser la variabilité des valeurs mesurées et de
préparer une éventuelle comparaison avec un modèle. (voir figure ??).

Avec un tableur On cherche dans les options d’édition de la courbe, la possibilité d’ajouter des « barres
d’erreur Y ». Un certain nombres d’options sont ensuite proposées, qui seront travaillées en TD et TP.

Avec python On utilise la fonction errorbar() de la bibliothèque de tracés de graphiques Matplotlib. On
trouvera un exemple sur https://www.physique.ptsi.prepa-dorian.fr

Figure E.2 – Une courbe expérimentale sans barre d’incertitude ne permet pas visualiser la variabilité des valeurs
mesurées. Pour cela, on ajoute dès qu’on le peut des barres d’incertitudes. Elles permettent également de
préparer une éventuelle comparaison avec un modèle.
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III.2 - Résidus normalisés
On suppose qu’on dispose d’un modèle paramétré (issu directement d’une théorie ou bien obtenu par ajuste-
ment), reliant deux grandeurs, par exemple (y = f(x)). Pour chaque valeur mesurée xi, on peut déterminer une
valeur ymod,i = f(xi) qui est la valeur de y prévue par le modèle quand x vaut xi. Les écarts entre les mesures
yi et les prévisions du modèle ymod,i sont appelés les résidus :

∀i, res(xi) = yi − ymod,i = yi − f(xi)

En divisant les résidus par les incertitudes-types sur les valeurs de yi, on obtient les résidus normalisés :

∀i, resnorm(xi) =
yi − f(xi)

u(yi)
(E.1)

Remarque : Le concept de résidus normalisés est très proche de celui des écarts normalisés vus au chapitre ??.
On fait tout de même attention au fait que les résidus normalisés peuvent être positifs ou négatifs, alors que les
écarts normalisés sont définis positifs via une valeur absolue au numérateur.
On peut ensuite tracer une représentation graphique des résidus normalisés mesurés. Généralement, on munit
également chaque point de cette courbe de barres d’incertitudes normalisées : ce sont les barres d’incertitudes
des valeurs divisées par l’incertitude-type. Concrètement, les barres d’incertitudes normalisées sont donc la
représentation graphique des intervalles [resnorm(xi)−2 ; resnorm(xi)+2] = [yi−f(xi)

u(yi)
−2 ; yi−f(xi)

u(yi)
+2]. L’intérêt

des résidus et barres d’incertitudes normalisés est qu’ils rendent plus facile visuellement la détermination de la
compatibilité modèle-mesures qu’avec une simple courbe expérimentale avec barre d’incertitudes.

Figure E.3 – Une courbe expérimentale, avec une modélisation possible des mesures (à gauche). Les résidus normalisés
accompagnées de leurs barres d’incertitudes normalisées (c’est-à-dire des segments de longueurs 2 au dessus
et en dessous de chaque point (à droite). Les résidus étant calculés grâce aux écarts entre les prévisions
du modèle et les mesures, un accord « parfait » entre les deux donnerait des résidus tous nuls.

PTSI – Lycée Dorian 22 2025-2026



Compétences transverses CT–E Comparaison à un modèle

III.3 - Détermination de la compatibilité (ou non-compatibilité)
Une fois qu’on a tracé la courbe expérimentale munie de ses barres d’incertitudes et tracé les résidus normalisés
de leurs barres d’incertitudes normalisés, on peut comparer le modèle aux mesures. Le critère de compatibilité
est très simple et est analogue à celui utilisé pour la comparaison de deux valeurs :

Un modèle est compatible avec les mesures si la courbe du modèle passe par les barres d’incertitudes expéri-
mentales. De façon équivalente, un modèle est compatible avec les mesures si l’axe des abscisses passe par les
barres d’incertitudes normalisées des résidus normalisés.
Dans tous les autres cas, le modèle n’est pas compatible avec les données expérimentales.

Figure E.4 – En haut : le modèle affine n’est pas compatible avec les données expérimentales. En bas : le modèle
polynomial d’ordre deux est compatible avec les données expérimentales.

On fait attention au fait qu’en aucun cas les résultats de mesures ne prouvent la validité d’un modèle (c’est-à-
dire qu’il est pertinent scientifiquement de modéliser de cette façon la situation étudiée). La conclusion la plus
positive à laquelle on puisse arriver est de déclarer « le modèle proposé est compatible avec les résultats des
mesures », mais cela est parfois le cas avec un modèle farfelu scientifiquement, et plusieurs modèles totalement
différents peuvent être compatibles avec les résultats de mesures. La compatibilité modèle-mesures ne dispense
donc pas de réfléchir en amont aux hypothèses utilisées pour modéliser.
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CT – Chapitre F

Simulations de la variabilité

I - Introduction
Bien que la variabilité des grandeurs mesurées existe toujours, il est parfois difficile d’y avoir accès par la mesure
(par exemple si la résolution de l’appareil est plus grande que la variabilité. D’autre part, dans certaines situa-
tions, il peut être parfois très compliqué de réaliser une étude analytique de toutes les données accumulées car
les mathématiques deviendraient excessivement compliquées (par exemple pour calculer des incertitudes-types
composées en dehors des cas simples listés au ??-??). On peut aussi être confrontés à un manque de temps
ou de moyens pour réaliser les nombreuses mesures permettant d’obtenir suffisamment de données expérimen-
tales. Dans toutes ces situations, on peut procéder à des simulations de la variabilité, permettant de prévoir ce
qu’aurait produit comme résultats la répétition de nombreuses mesures indépendantes.

II - Méthode de Monte Carlo
C’est la méthode préconisée en CPGE. Elle consiste à réaliser des tirages aléatoires de grandeurs en s’appuyant
sur des raisonnements probabilistes. Son nom fait allusion aux jeux de hasard pratiqués dans les casinos de…
Monte Carlo.

III - Simulation de la variabilité d’une grandeur
Pour simuler la variabilité d’une grandeur, il faut au préalable avoir choisi un modèle pour cette variabilité : la
simulation ne dispense pas de l’étude préalable du processus de mesurage ! Il faut ensuite réfléchir au nombre
de tirages aléatoires qu’on veut simuler. Avec les moyens informatiques modernes, on peut facilement simuler
de centaines, des milliers voire des dizaines de milliers de tirages, ce qui est souvent suffisant pour obtenir des
simulations de bonne qualité. On comprend au passage l’intérêt de la simulation en terme de gain de temps par
rapport aux mesurages réels : réaliser des dizaines de milliers de mesures indépendantes de la même grandeur
est tout simplement hors de portée dans des conditions usuelles de travaux pratiques.

Exemples On montre sur la figure ?? l’évolution des résultats de simulation et la confrontation avec le
résultat théorique rigoureux, pour un modèle de variabilité rectangulaire et différents nombres de tirages (10,
1000, 10 000, 100 000 000). On constate évidemment qu’en augmentant le nombre de tirages les résultats simulés
se rapprochent des résultats théoriques. n = 10000 tirages sont généralement largement suffisants pour
avoir une simulation de bonne qualité. On fait néanmoins attention que les calculs peuvent prendre
beaucoup de temps ; si cela devient problématique, un tirage de quelques milliers de valeurs est un très bon
compromis. On constate également que pour un nombre très élevé de tirages (100 000 000), la distribution
obtenue est bien quasiment rectangulaire.
Grâce à la figure ??, on arrive aux mêmes conclusions pour un modèle de variabilité gaussien.

Avec python
— variabilité rectangulaire : fonction random.uniform() de la bibliothèque de calculs numériques NumPy ;
— variabilité gaussienne, fonction random.normal() de la bibliothèque de calculs numériques NumPy.

IV - Simulation de la variabilité de grandeurs composées
Pour simuler la variabilité d’un mesurande dépendant de plusieurs grandeurs d’entrée et déterminer une valeur
de son incertitude-type composée, on peut dans les cas simples utiliser les formules de propagation vues au
??-??, mais aussi procéder à des simulations. Dans les cas plus compliqués, pour lesquels il n’existe pas de
formules de propagation, la simulation est la seule alternative.
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Figure F.1 – Différentes simulations de variabilité rectangulaire (10, 1000, 10 000, 100 000 000 tirages).
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Figure F.2 – Différentes simulations de variabilité gaussienne (10, 1000, 10 000, 100 000 000 tirages).
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L’idée générale est de simuler par la méthode de Monte Carlo les résultats de nombreux mesurages indépendants
pour chaque grandeur d’entrée, puis d’en déduire les valeurs attribuables au mesurande et enfin d’en déterminer
l’incertitude-type résultante.

Exemple pour une relation du type z = x y, on a simulé des ensembles {xi} et {yi} de n valeurs de x et y
puis on en a déduit n valeurs de z par la relation ∀i ∈ J0 ; n− 1K, zi = xi yi et représenté la variabilité simulée
de z à la figure ??.

Avec python le code correspondant à lexemple présenté à la figure ?? est disponible sur https://www.
physique.ptsi.prepa-dorian.fr

Figure F.3 – On a réalisé 100000 tirages de valeurs de x selon un modèle rectangulaire de valeur centrale 123 et d’étendue
6, et 100000 tirages de valeurs de y selon un modèle rectangulaire de valeur centrale 98 et d’étendue 12.
On en a déduit l’histogramme de z.

V - Variabilité des paramètres d’un modèle
Quand on ajuste les paramètres d’un modèle grâce à des données expérimentales, on peut déterminer si le
modèle est en accord avec les valeurs mesurées grâce aux barres d’incertitudes et aux résidus normalisés. C’est
ce qu’on a fait au chapitre ?? « Ajustements de modèles et comparaisons aux mesures ».
Avec un ajustement, on détermine les meilleures estimations des paramètres (par exemple l’estimation de la
pente p̄ et de l’ordonnée à l’origine b̄ pour le modèle affine). Ces estimations sont des valeurs qui elles-mêmes
sont incertaines puisqu’elles sont issues de données expérimentales. On peut donc déterminer leurs incertitudes-
types.
On peut :

— acquérir expérimentalement de nombreux jeux de données indépendants, puis faire un ajustement linéaire
pour chaque jeux de données, puis faire des statistiques sur les résultats de tous ces ajustements pour en
déduite les incertitudes-types sur les paramètres du modèle ;

— modéliser la variabilité des grandeurs dont on cherche à déterminer les paramètres par ajustement, et
simuler la réalisation de nombreuses expériences indépendantes grâce à la méthode de Monte Carlo.

Exemple Un exemple complet et détaillé de simulation de la variabilité des paramètres d’un modèle est
présenté sur https://www.physique.ptsi.prepa-dorian.fr.
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Annexes

Table 1 – Préfixes du système international d’unités

10n Préfixe Symbole Écriture décimale
1015 péta P 1 000 000 000 000 000
1012 téra T 1 000 000 000 000
109 giga G 1 000 000 000
106 méga M 1 000 000
103 kilo k 1000
102 hecto h 100
101 déca da 10
1 (aucun) — 1

10−1 déci d 0,1
10−2 centi c 0,01
10−3 milli m 0,001
10−6 micro µ 0,000 001
10−9 nano n 0,000 000 001
10−12 pico p 0,000 000 000 001
10−15 femto f 0,000 000 000 000 001

Table 2 – Constantes fondamentales et autres constantes

Constantes fondamentales du SI
Symbole Valeur Unité Nom

kB 1,380 649 · 10−23 J K−1 constante de Bolztmann (valeur exacte)
NA 6,022 140 76 · 1023 mol−1 nombre d’Avogadro (valeur exacte)
e 1,602 176 634 · 10−19 C charge électrique élémentaire (valeur exacte)
c 2,997 924 58 · 108 m s−1 vitesse de la lumière dans le vide (valeur exacte)
h 6,626 070 15 · 10−34 J s constante de Planck (valeur exacte)

∆νCs 9 192 631 770 Hz fréquence de la transition hyperfine de l’état fonda-
mental de l’atome de césium 133 non perturbé, (va-
leur exacte)

Kcd 683 lm W−1 efficacité lumineuse d’un rayonnement monochroma-
tique de fréquence 540 · 1012 Hz (valeur exacte)

Autres constantes
Symbole Valeur Unité Nom
R = NA kB 8,314 462 618 J mol−1 K−1 constante des gaz parfaits (valeur exacte)

G 6,672 59 · 10−11 N m2 kg−2 constante de gravitation
me 0,910 938 97 · 10−30 kg masse de l’électron
mp 1,672 623 1 · 10−27 kg masse du proton
ε0 8,854 187 817 · 10−12 F m−1 permittivité diélectrique du vide

µ0 = 1
c2 ε0

4π × 10−7 H m−1 perméabilité magnétique du vide
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Table 3 – Lettres minuscules grecques utilisées en sciences physiques

Minuscule Nom Utilisation
α alpha Géométrie : angle. Physique nucléaire : rayonnement particulaire peu pénétrant

formé de noyaux d’Hélium à haute énergie, et associé à la radioactivité. Phy-
sique : coefficient de dilatation linéaire.

β beta Acoustique : intensité sonore. Géométrie : angle. Physique nucléaire : rayonne-
ment particulaire moyennement pénétrant formé d’électrons à haute énergie,
et associé à la radioactivité.

γ gamma Physique nucléaire : rayonnement électromagnétique à très haute énergie s’éta-
lant au-delà des rayons X en fréquence et associé à la radioactivité. Optique :
grandissement transversal. Chimie : conductivité électrique d’une solution.
Thermodynamique : rapport des capacités calorifiques d’un gaz parfait.

δ delta Physique : forme différentielle ; radical placé devant une grandeur indiquant
une variation infinitésimale de celle-ci. P. ex. δx, δϕ, etc.

ε, ε epsilon Mathématiques et physique : symbole d’une variation infinitésimale. Utilisé seul
à la différence du radical δ. Résistance des matériaux : désigne une déformation
relative. Thermodynamique : émissivité thermique.

η eta Physique des fluides : viscosité. Électrocinétique : intensité du courant électro-
moteur d’une source de courant.

θ theta Géométrie : désigne la deuxième coordonnée sphérique ou l’angle polaire.
κ kappa Géométrie, Cinématique : utilisé pour désigner la courbure locale d’une fonction

ou d’une trajectoire. Physique : constante de rappel d’un ressort.
λ lambda Électromagnétisme : longueur d’onde d’un phénomène périodique. Géométrie

spatiale : longitude. Physique : mesure une conductibilité thermique. Chimie :
conductivité molaire limite d’un soluté.

µ mu Physique nucléaire ou quantique : utilisé pour désigner le moment orbital (vec-
toriel) d’une particule ou d’un système atomique en rotation. Physique : utilisé
pour désigner une constante de friction ou une masse volumique

ν nu Physique, Électricité : fréquence d’un phénomène périodique liée à la longueur
d’onde λ et à la célérité c par la relation ν = c

λ . Chimie : coefficient stœchio-
métrique algébrique.

ξ xi Physique, Mécanique : constante d’amortissement. Chimie : avancement de
réaction.

π pi Géométrie, trigonométrie : rapport entre le périmètre d’un cercle et son dia-
mètre (3.14159265...). Électromagnétisme : désigne le vectuer de Poynting.

ρ rho Géométrie : parfois utilisée pour désigner la coordonnée radiale en repérage
polaire ou cylindrique. Physique, Électricité : résistivité d’un conducteur (ré-
sistance par unité de longueur et unité de section). Physique : masse volu-
mique d’une substance, souvent confondue avec la densité ; densité volumique
de charge électrique.

σ sigma Thermodynamique : « constante » de Stefan liant l’émissivité radiante du corps
noir à la température (absolue). Également utilisée pour désigner la constante
de Boltzmann. Statistiques : écart-type. Résistance des matériaux : désigne une
contrainte.

τ tau Physique : constante de temps encore appelée temps de relaxation.
φ, ϕ phi Géométrie : désigne souvent la troisième coordonnée sphérique ou la deuxième

coordonnée cylindro-polaire. Signaux : phase du signal.
χ chi Optique physique : constante de Rabi (lasers). Thermodynamique : coefficient

de compressibilité.
ψ psi Mécanique ondulatoire ou quantique : fonction d’onde. Géométrie : désigne

parfois la deuxième coordonnée en repérage polaire.
ω omega Géométrie, Cinématique : vitesse angulaire d’un point ou d’un solide en rota-

tion. Signaux : pulsation d’un signal périodique.
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Table 4 – Lettres majuscules grecques

Majuscule Nom Utilisation
A alpha Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
B beta Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Γ gamma Peu ou pas utilisé.
∆ delta Mathématiques : différence ; variation finie d’une fonction.
E epsilon Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Z zeta Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
H eta Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Θ theta Physique, Thermodynamique : désigne une température, en général absolue.
I iota Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
K kappa Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Λ lambda Mathématiques : sert parfois à désigner la valeur propre d’une matrice.
M mu Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
N nu Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Ξ xi Peu ou pas utilisé.
O omicron Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Π pi Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
P rho Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Σ sigma Mathématiques : s’utilise pour des sommes d’objets distincts de même nature.

Géométrie : désigne une surface.
T tau Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Y upsilon Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Φ phi Physique : parfois utilisée pour désigner un flux magnétique ou lumineux.
X chi Peu ou pas utilisé du fait de son absence de lisibilité distinctive.
Ψ psi Mécanique ondulatoire ou quantique : fonction d’onde sous la notation 〈Ψ| ou

|Ψ〉
Ω omega Électricité : unité de résistance ohmique. Se prononce alors « Ohm ».

Dans notre exemple, on a admis que le nombre de degrés de liberté est m− 1. Ce résultat, qui est souvent vrai
quand on ne souhaite déterminer qu’une moyenne, n’est pas à connaître. Nous rencontrerons d’autres situations
lors des TP et des logiciels pourront alors nous aider à déterminer ce nombre de degrés de liberté.
On remarque que, pour un niveau de confiance à 95%, le facteur d’élargissement tend vers la valeur 1,96 qu’on
arrondit souvent à 2.
La table ci-dessus est disponible sur le site https://www.physique.ptsi.prepa-dorian.fr.
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Table 5 – Table de Student

On présente ci-dessous une table de Student, qui permet de déterminer le facteur d’élargissement k utile pour
calculer les incertitudes élargies.
Exemple d’utilisation : on souhaite déterminer la valeur moyenne d’une grandeur dont on a mesuré n = 6 valeurs
indépendantes. Le nombre de degrés de liberté associé est n− 1 = 5. Si on souhaite le facteur d’élargissement à
un niveau de confiance de 65%, on lit l’intersection de la ligne 5 et de la colonne 95%, c’est-à-dire k = 2, 571.

Degrés de liberté ↓ 80% 90% 95% 98% 99% ← Niveau de
confiance

2 1,886 2,920 4,303 6,965 9,925
3 1,638 2,353 3,182 4,541 5,841
4 1,533 2,132 2,776 3,747 4,604
5 1,476 2,015 2,571 3,365 4,032
6 1,440 1,943 2,447 3,143 3,707
7 1,415 1,895 2,365 2,998 3,499
8 1,397 1,860 2,306 2,896 3,355
9 1,383 1,833 2,262 2,821 3,250

10 1,372 1,812 2,228 2,764 3,169
11 1,363 1,796 2,201 2,718 3,106
12 1,356 1,782 2,179 2,681 3,055
13 1,350 1,771 2,160 2,650 3,012
14 1,345 1,761 2,145 2,624 2,977
15 1,341 1,753 2,131 2,602 2,947
16 1,337 1,746 2,120 2,583 2,921
17 1,333 1,740 2,110 2,567 2,898
18 1,330 1,734 2,101 2,552 2,878
19 1,328 1,729 2,093 2,539 2,861
20 1,325 1,725 2,086 2,528 2,845
21 1,323 1,721 2,080 2,518 2,831
22 1,321 1,717 2,074 2,508 2,819
23 1,319 1,714 2,069 2,500 2,807
24 1,318 1,711 2,064 2,492 2,797
25 1,316 1,708 2,060 2,485 2,787
26 1,315 1,706 2,056 2,479 2,779
27 1,314 1,703 2,052 2,473 2,771
28 1,313 1,701 2,048 2,467 2,763
29 1,311 1,699 2,045 2,462 2,756
30 1,310 1,697 2,042 2,457 2,750
…
∞ 1,96
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