
Transformations de la matière Correction CTM–TD2 Cinétique chimique

Correction CTM – TD 2
Cinétique chimique

I - Cinétique formelle
Corrigé sommaire. Remarques :

— « Déterminer » implique que la démonstration est à donner dans la réponse ; dans le corrigé, pour faire
plus court, les démonstrations n’ont pas toutes été écrites. Elles sont généralement dans le cours.

— « Donner » signifie qu’on peut se contenter de donner les hypothèses ou justifications nécessaires pour
conclure et le résultat final. Si aucune explication n’est donnée, le résultat n’est pas accepté.

1. ∀t ≥ 0,
1

[A]
− 1

[A]0
= 2k(T )t

2. À t = t1, a(t1) = 0, 80a0 d’où 2k(T )t1 = 1
0,80a0

− 1
a0

et k(T ) =
1

8, 0a0t1
.

A.N. : k(T ) = 1
8,0×0,20 mol L−1×30 min = 0,021L mol−1 min−1

3. t 1
2
=

1

2k(T )a0
= 4t1 . A.N. : t 1

2
= 4× 30min = 1,2 · 102 min.

4. k(T ), comme son nom et sa notation l’indiquent, est une constante indépendante des concentrations et
ne dépend que de la température. k(T ) reste donc inchangée quand on modifie la concentration initiale
en A. En revanche, t 1

2
dépend de a0. Selon t 1

2
= 1

2k(T )a0
, si a0 est divisé par 2, le temps de demi-réaction

double.
Ce résultat peut également être obtenu par le raisonnement suivant : la réaction est d’ordre 2, donc quand
la concentration est doublée, la vitesse est multipliée par 4 (2 au carré) ; en conséquence, consommer deux
fois moins de réactif prend deux fois plus de temps.

5. On note k = k(T ) et k′ = k(T ′). L’énergie d’activation et le facteur de fréquence sont des grandeurs qui
ne dépendent que de la réaction étudiée, pas de la température. On peut donc écrire :

k = Ae−
Ea
RT (1.1)

k′ = Ae−
Ea
RT ′ (1.2)

On divise (1.1) par (1.2) pour éliminer A, qu’on ne connaît pas, et on obtient : k
k′ = e

−Ea
R

(
1
T − 1

T ′

)
. On en

déduit que Ea = R
TT ′

T ′ − T
ln
(
k′

k

)
.

A.N. : Ea = 8,31 J K−1 mol−1 × 293 K×373 K
373 K−293 K × ln( 0,10 L mol−1 min−1

0,021 L mol−1 min−1 ) = 17,8 kJ mol−1 = 18 kJ mol−1.
Il est recommandé de vérifier le signe et l’homogénéité de l’expression trouvée avant de faire l’application
numérique.

6. Par analogie avec la question précédente, on peut écrire : k′′

k′ = e
−Ea

R

(
1

T ′′ − 1
T ′

)
. On en déduit que

1

T ′′ =
1

T ′ +
R ln

(
k′

k′′

)
Ea

ou encore T ′′ =
1

1
T ′ +

R ln
(

k′
k′′

)
Ea

(les deux réponses sont acceptées).

A.N. : T ′′ = 1

1
373 K+

8,31 J K−1 mol×ln
(

1
10

)
17,8 kJ mol−1

= 62 · 101 K.
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Transformations de la matière Correction CTM–TD2 Cinétique chimique

II - Décomposition d’un peroxyde en phase gazeuse
A � 2 B + C ntot,g

t = 0 n0 0 0 n0

t n0 − ξ 2ξ ξ n0 + 2ξ

1. La réaction est d’ordre 1 par rapport à A dont le coefficient stœchiométrique est 1, donc ∀t, k[A] = −d[A]
dt

et ∀t ≥ 0, [A](t) = [A]0e
−kt. D’autre part, [A]0 = n0

V donc ∀t ≥ 0, [A](t) =
n0

V
e−kt .

P0 est la pression initiale du système donc P0 = P (t = 0) = ntot,g
RT
V .

Or, à t = 0, ntot,g(t = 0) = nA0+nB0+nC0 = n0 donc P0 = n0
RT
V . On en déduit, ∀t ≥ 0, [A](t) = P0

RT e
−kt.

Or, PA = nA
RT
V = [A]RT donc, finalement, ∀t ≥ 0, PA(t) = P0e

−kt .

2. PB = nB
RT
V or nB = 2ξ = 2(n0 − nA) donc PB = 2(n0 − nA)

RT

V
= 2(P0 − PA) . De même, on trouve

PC = (n0 − nA)
RT

V
= (P0 − PA) .

3. On a P = PA + PB + PC donc P = 3P0 − 2PA = 3P0 − 2P0e
−kt = P0

(
3− 2e−kt

)
.

4. On peut représenter directement P (t) ou bien, par exemple, P
P0

= 3 − 2e−kt en fonction de kt. Cela a
l’avantage de ne manipuler que des grandeurs dites « réduites » qui sont sans dimension et permettent de
représenter l’évolution de P (t) de façon indépendante de P0 et de k. On a alors P

P0
(t = 0) = 1 et lim

t→∞
= 3.

kt0

P
P0

1

1

3

Remarque : bien que la question ne soit pas posée, il est toujours utile de faire apparaître graphiquement
le fait que, pour un ordre 1, la tangente à l’origine coupe la valeur asymptotique finale après une durée
∆t = 1

k . Par ailleurs, la démonstration de ce résultat peut tout à fait être demandée en devoirs ou aux
concours.

5. On a ∀t ≥ 0, [A](t) = [A]0e
−kt et [A](t 1

2
) ≡ [A]0

2 puisque A est le seul réactif. D’où t 1
2
=

ln 2

k
.

6. On note t∗ = 50min et P ∗ = P (t∗). On a : P ∗ = P0

(
3− 2e−kt∗

)
et donc k =

1

t∗
ln

(
2

3− P∗

P0

)
. A.N.

k =
1

50min
× ln

(
2

3− 431 hPa
250 hPa

)
= 8,99 · 10−3 min−1 = 9,0 · 10−3 min−1.

Il est recommandé de vérifier le signe et l’homogénéité de l’expression trouvée avant de faire l’application
numérique.

7. A.N : t 1
2
= ln 2

8,99·10−3 min−1 = 77,1min = 77min.

8. On note P1 = P (t1). En réutilisant le résultat de la question 6., on trouve rapidement : t1 =
1

k
ln

(
2

3− P1

P0

)
.

A.N. : t1 =
1

8,99 · 10−3 min−1 × ln

(
2

3− 600 hPa
250 hPa

)
= 134min = 13 · 101 min.
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III - Énergie d’activation

1. On lit dans le premier tableau que l’unité de k est L mol−1 s−1. Cela signifie que la dimension de k est
C−1T−1, si on note C la dimension d’une concentration. Pour une réaction qui admet un ordre, et si on
note p et q les ordres partiels par rapport respectivement à NO2 et CO, alors dim(k) ≡ C1−(p+q)T−1. On
en déduit que l’ordre global de réaction est p+ q = 2.

2. Selon la loi semi-empirique d’Arrhénius, on peut écrire

k(T ) = Ae−
Ea
RT

où Ea est l’énergie molaire d’activation, A le facteur de fréquence, R la constante des gaz parfaits et T
la température thermodynamique exprimée en kelvins. Si on prend le logarithme népérien de l’expression
précédente, on trouve :

ln(k(T )) = − Ea

RT
+ ln(A)

La modélisation affine de l’évolution de la constante de vitesse proposée dans le cahier de laboratoire est
de la forme :

ln k = a
1

T
+ b

Par identification, on trouve
a = −Ea

R
ou encore Ea = −Ra

A.N. : Ea = (−8)× (−16 · 103) = 1,28 · 105 J mol−1 = 1,28 · 102 kJ mol−1

Remarques :
— l’ordre de grandeur d’une énergie molaire d’activation (quelques dizaines ou centaines de kilojoules

par mole) est bien respectée ;
— Ea n’est pas une énergie, mais une énergie molaire.

3. Ea = −Ra donc en termes d’incertitude-type u(Ea) = Ea

√(
u(R)
R

)2
+
(

u(a)
a

)2
or R n’est pas une

grandeur mesurée mais une valeur numérique supposée connue, on a donc u(R) = 0. On en déduit :
u(Ea) = Ea

(
u(a)
|a|

)
. Or Ea

|a| = R d’où u(Ea) = Ru(a).
De même, en termes d’incertitude-élargies : ∆Ea = R∆a avec ∆a = ma. Finalement :

∆Ea = Rmu(a) = 8× 3× 4 · 102 = 9,6 · 103 J mol−1

Cette incertitude-élargie porte sur les centaines de joules par mole. On écrit donc la valeur numérique de Ea

de façon que son dernier chiffre porte également sur les centaines de joules par mole : Ea = 128,0 kJ mol−1.
Finalement :

Ea = (128, 0± 9, 8) kJ mol−1

4. Selon la loi d’Arrhénius et le modèle affine proposé, on a b = ln(A) ce qui permet de mesurer A grâce à

A = eb

IV - Spectrophotométrie
Pour poser les notations utiles, on dresse un tableau d’avancement en concentrations :

MnO –
4 + alcène � MnOn + produits absorbance

t = 0 c0 large excès 0 0 A0 = ε1Lc0
t c1 − c0 − c1 ? At = ε1Lc1 + ε2L(c0 − c1)

t → ∞ 0 − c0 ? A∞ = ε2Lc0
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1. La réaction admet un ordre, et la vitesse suit une loi de Van’t Hoff, donc

∀t, v = k(T )[MnO –
4 ][alcène]

On travaille avec un large excès d’alcène par rapport au permanganate, donc ∀t, [alcène] � [MnO –
4 ]. Il y

a donc dégénérescence d’ordre et on a ∀t, [alcène] ≈ [alcène]0 d’où :

∀t, v = k(T )[MnO –
4 ][alcène] ≈ k(T )[alcène]0[MnO –

4 ]

On note kapp = k(T )[alcène]0 et on a finalement :

∀t, v = −d[MnO –
4 ]

dt
≈ kapp[MnO –

4 ]

Cette équation se résout en :

−d[MnO –
4 ]

[MnO –
4 ]

= kapp dt soit
∫ [MnO –

4 ](t)

[MnO –
4 ](t=0)

−d[MnO –
4 ]

[MnO –
4 ]

=

∫ t

0

kapp dt

∀t ≥ 0, ln
(
[MnO –

4 ]0
[MnO –

4 ]

)
= ln

(
c0
c1

)
= kappt

D’autre part, compte tenu du fait que seuls MnO –
4 et MnOn absorbent à la longueur d’onde de travail,

on a : A0 = ε1Lc0, At = ε1Lc1 + ε2L(c0 − c1) et A∞ = ε2Lc0. Pour répondre à la question posée, il faut
exprimer c0

c1
en fonction des absorbances et donc éliminer les termes ε1L et ε2L.

— on remarque que ε1L =
A0

c0
et ε2L =

A∞

c0
;

— on en déduit : At =
A0c1
c0

+ A∞
c0

(c0 − c1) = A0
c1
c0

+A∞ −A∞
c1
c0

= A∞ + (A0 −A∞) c1c0

— finalement c1
c0

=
At −A∞

A0 −A∞
et donc c0

c1
=

A0 −A∞

At −A∞
.

La fonction recherchée est donc Y = ln
(
A0 −A∞

At −A∞

)
puisque son tracé en fonction du temps est une

droite passant par l’origine de pente kapp.

2. Par lecture graphique : kapp =
∆Y

∆t
=

(10 + 2
7 )− (4 + 3

7 )

9 s − 4 s
= 1,2 s−1.

V - Décomposition de l’éthanal
On commence par dresser le tableau d’avancement

A � B + C ntot,g

t = 0 n0 0 0 n0

t n0 − ξ ξ ξ n0 + ξ

1. Par définition r =
dx
dt

=
1

V

dξ
dt

. Le mélange gazeux étant un gaz parfait, on peut par ailleurs écrire

PV = ntot,gRT = (n0 + ξ)RT et donc dP
dt = RT

V
dξ
dt . Finalement r(t) =

1

RT

dP
dt

.

2. P (t) = ntot,g
RT
V = (n0 + ξ)RT

V = (2n0 − nA)
RT
V .

En remarquant que PA = nA
RT
V et que P (t = 0) = ntot,g(t = 0)RT

V = n0
RT
V , on trouve [A] =

2P0 − P

RT
.

3. On a r = k[A]q. Pour déterminer q, on peut tracer la courbe représentative de ln(r) en fonction de ln ([A]),
dont q est la pente. On obtient les valeurs de r grâce à la réponse à la question 1. et à l’approximation
différentielle de la dérivée de la pression proposée dans l’énoncé. On obtient les valeurs de [A], grâce à la
question 2. (et à une gestion rigoureuse des unités du système international…).
Le tableau de valeurs et la courbe sont donnés en Annexes. Remarque : en Annexes, la courbe tracée
est ln

(
r
r0

)
= f

(
ln
(

[A]
[A]0

))
pour satisfaire aux exigences d’homogénéité, mais ce n’est pas requis pour

trouver la bonne valeur. La régression linéaire détermine une pente égale à 2,05. On retient comme valeur
approchée : q ≈ 2. Il faudra valider cette valeur grâce à la méthode intégrale.
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4. On peut utiliser par exemple le fait que, à t = 0 : k =
r(t = 0)

[A]20
. On évalue grâce aux données en

Annexes : r(t = 0) = 9,35 · 10−4 mol m−3 s−1 et [A]0 = 4,55mol m−3 (attention aux unités !). D’où
k = 4,52 · 10−5 m3 mol−1 s−1 = 4,5 · 10−5 m3 mol−1 s−1.

5. L’ordre supposé est q = 2. Si l’ordre est égal à 2, alors on devrait avoir ∀t ≥ 0,
1

[A]
− 1

[A]0
= k(T )t et

la courbe 1
[A] = f(t) serait alors une droite. On trace cette courbe. On s’aperçoit qu’il s’agit d’une droite

aux incertitudes expérimentales près, l’ordre q = 2 est donc validé expérimentalement.

6. On peut calculer le temps de demi réaction τ 1
2
, en appliquant qu’à l’ordre 2, τ 1

2
=

1

k[A]0
.

A.N. : τ 1
2
= 1

4,52·10−5 m3 mol−1 s−1×4,55 mol m−3 = 4,85 · 103 s = 81min.
Il est vivement recommandé de vérifier ce résultat par une lecture graphique. Pour cela, il faut déterminer
l’abscisse pour laquelle l’ordonnée est égale à 2

[A]0
. (Il faut prolonger les axes de la courbe fournie en

Annexes, le point recherché étant en dehors du tracé.)

Annexes

t (min) 0,00 4,00 9,00 14,0 20,0 26,5 34,0 42,5 53,0
P (hPa) 283 297 312 326 340 354 368 382 397

0 14 29 43 57 71 85 99 114
3,50 3,00 2,80 2,33 2,15 1,87 1,65 1,43 -

5,833333333 5,00 4,666666667 3,888888889 3,58974359 3,111111111 2,745098039 2,380952381 -
283 269 254 240 226 212 198 184 169

2,83E+04 2,69E+04 2,54E+04 2,40E+04 2,26E+04 2,12E+04 1,98E+04 1,84E+04 1,69E+04

0,00 -0,050735518 -0,108112631 -0,164807974 -0,224911898 -0,288860623 -0,357179867 -0,43051114
0,00 -0,15415068 -0,223143551 -0,405465108 -0,485507816 -0,628608659 -0,753771802 -0,90

Pente de régression y=f(x) 2,047961796
Coefficient de régression 0,9942

t (min) 0,00 4,00 9,00 14,0 20,0 26,5 34,0 42,5 53,0
2,20E-01 2,32E-01 2,45E-01 2,60E-01 2,76E-01 2,94E-01 3,15E-01 3,39E-01 3,69E-01

Pente de régression linéaire de 1/[A]=f(t) 0,00278
Coefficient de régression 1,0

P-P0 (hPa)
(P(t2)-P(t1))/(t2-t1)=RTv(t)  (hPa/min)
(P(t2)-P(t1))/(t2-t1)=RTv(t)  (Pa/s)
2P0-P (hPa)
2P0-P (Pa)

ln(2P0-P)-ln(P0)
ln(v(t))-ln(v0)

1/[A]=RT/(2P0-P) (m3/mol)
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-0,20

0,00
Méthode différentielle

ln{(2P0-P)/P0}=ln{[A]/[A]0}

ln
{v

(t)
/v

0}

ln( v
v0

)=a ln( 2 P0−PP0 )+b
avec a=2,05

lnv t= f  ln[A]

0,00 10,00 20,00 30,00 40,00 50,00 60,00
0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

Méthode intégrale (ordre 2)
réalisée avec barres d'erreurs à 5%

t (min)

1/
[A

] (
m

3/
m

ol
)

1
[A]

=
RT

2 P0−P
= f ( t)

1
[A]

=a t+b

aveca=0,00278(m3.mol−1.min−1)
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