
Oscillations libres et forcées OS–J Oscillateur harmonique

OS – Chapitre J

Oscillateur harmonique

I - Oscillateur harmonique en mécanique : système
masse–ressort

I.1 - Rappels de mécanique du point
a - Cinématique
On se place dans un référentiel (R) dans lequel on définit un repère (Oxyz) orthonormé direct. On utilise les

Coordonnées cartésiennes

Les vecteurs unitaires sont ~ux, ~uy, ~uz qui sont :
— colinéaires et de même sens que respectivement les axes

(Ox), (Oy) et (Oz) ;
— de norme égale à un (donc sans dimension).

O
y

z

x
Pour un objet mobile situé au point M(t) de coordonnées {x(t), y(t), z(t)}, on définit :

— son projeté orthogonal M ′ sur le plan (Oxy) ;
— son projeté orthogonal Mx sur l’axe (Ox) (qui est aussi celui de M ′).

Définition : Vecteur Position

−−→
OM = x~ux + y ~uy + z ~uz

Définition : Vecteur vitesse

−→v =
d
−−→
OM

dt
En coordonnées cartésiennes :

~v = vx ~ux + vy ~uy + vz ~uz =
dx
dt

~ux +
dy
dt

~uy +
dz
dt

~uz = ẋ ~ux + ẏ ~uy + ż ~uz
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Définition : Vecteur accélération

−→a =
d~v
dt

=
d2−−→OM

dt2

En coordonnées cartésiennes :

~a = ax ~ux + ay ~uy + az ~uz =
dvx
dt

~ux +
dvy
dt

~uy +
dvz
dt

~uz =
d2x

dt2
~ux +

d2y

dt2
~uy +

d2z

dt2
~uz

= v̇x ~ux + v̇y ~uy + v̇z ~uz = ẍ ~ux + ÿ ~uy + z̈ ~uz

Remarques :
— La valeur de la vitesse (respectivement de l’accélération) est la norme du vecteur vitesse (respectivement

accélération) :
v = ‖~v‖ =

√
v2x + v2y + v2z et a = ‖~a‖ =

√
a2x + a2y + a2z

— dim(v) = L · T−1, v (ainsi que toutes ses composantes) s’exprime en m s−1 ;
— dim(a) = L · T−2, a (ainsi que toutes ses composantes) s’exprime en m s−2.

b - Dynamique
Le mouvement d’un objet peut être modifié par une action extérieure, celle-ci est caractérisée par son intensité,
sa direction et son sens. Pour la représenter, on définit donc un vecteur force −→

F .
Parmi les forces classiques, on a

— Poids
−→
P = m~g où m est la masse de l’objet et ~g l’accélération de la pesanteur : vecteur vertical, orienté

vers le bas, de norme g ≈ 9,81m s−2 ;
— Force de rappel élastique

−→
FR : force exercée par un ressort de longueur actuelle `, caractérisé par sa

longueur à vide `0 et sa raideur k. Cette force a tendance à ramener le ressort à sa longueur à vide, et
est proportionnelle à l’élongation, c’est-à-dire la différence entre la longueur à vide et la longueur actuelle :

Ressort au repos
(` = `0)

Ressort comprimé
(` < `0)

Ressort étiré
(` > `0)

L’expression de la force de rappel est
−→
FR = −k (`− `0) ~uR où ~uR est le vecteur unitaire colinéaire au

ressort orienté vers le point qui subit la force.

Le lien entre cinématique et dynamique est fait grâce à la

Loi : 2e loi de Newton (ou Relation Fondamentale de la Dynamique – RFD)

Soit un point matériel M de masse m soumis à un ensemble de forces extérieures de résultante
∑−→

F ext.
Dans un référentiel galiléen :

m~a =
∑−→

F ext
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c - Énergie
Les grandeurs énergétiques utiles en mécanique sont :

Définition : Énergie cinétique

Pour un point matériel de masse m, animé d’une vitesse v

Ec =
1

2
mv2

Définition : Énergie potentielle

Grandeur associée à certaines forces (dites conservatives). Parmi celles-ci

— énergie potentielle de pesanteur (associée au poids
−→
P ) :

Ep,p = mgz

où (Oz) est l’axe vertical, orienté vers le haut.

— énergie potentielle élastique (associée à la force de rappel d’un ressort
−→
FR) :

Ep,r =
1

2
k (`− `0)

2

Définition : Énergie mécanique

Pour un point matériel, somme de son énergie cinétique et des énergies potentielles de toutes les forces
conservatives qui s’exercent dessus :

Em = Ec +
∑

Ep,i

I.2 - Étude du système masse–ressort
a - Position du problème (ressort vertical)

On considère un point matériel M , de masse m accroché à l’extré-
mité d’un ressort vertical, de longueur à vide `0 et de raideur k.
On se place dans le référentiel terrestre, que l’on supposera galiléen
et on néglige les frottements.

Les forces qui s’exercent sur le point M sont son poids
−→
P et le

rappel du ressort
−→
FR.

(M, m)

`

~g
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b - Mise en équation

On choisit le repère (Oxyz) tel que
— O est l’extrémité fixe du ressort ;
— l’axe (Ox) est vertical vers le bas.

On a alors
−→
P = m~g = mg~ux et

−→
FR = −k (`− `0) ~uR = −k (x− `0) ~ux

La RFD donne
m~a =

−→
P +

−→
FR

On projète sur l’axe (Ox) (ie on multiplie scalairement l’équation par ~ux), soit

mẍ = mg − k (x− `0)

ou encore

ẍ+
k

m
x = g +

k`0
m

Par analyse dimensionnelle dim
(

k
m

)
= T−2.

On posera ω0 =

√
k

m
. ω0 est appelé pulsation propre et s’exprime en rad s−1.

On note xeq la position d’équilibre. À l’équilibre x est constant donc ẍ = 0 et on a alors

k

m
xeq = g +

k`0
m

soit xeq = `0 +
mg

k

On peut finalement mettre l’équation sous forme canonique :

ẍ+ ω2
0x = ω2

0xeq

On reconnait une équation différentielle linéaire du second ordre, avec second membre.

Remarque

Si on note X = x− xeq

On a évidemment Ẋ = ẋ et Ẍ = ẍ, l’équation devient

Ẍ + ω2
0X = 0

c - Aspect énergétique
Énergie cinétique

Ec =
1

2
mv2 =

1

2
mẋ2 =

1

2
mẊ2

Énergie potentielle

Ep = Ep,p + Ep,r avec

Ep,p = −mgx (axe (Ox) vertical vers le bas).
Epr =

1
2
k (x− `0)

2
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Énergie mécanique

Em = Ec + Ep = Ec + Ep,p + Ep,r soit

Em =
1

2
mẋ2 −mgx+

1

2
k (x− `0)

2

On s’intéresse aux variations de l’énergie dans le temps, on exprime donc

dEm

dt
= mẋẍ−mg + kẋ (x− `0)

= ẋ (mẍ+ k (x− `0)−mg)︸ ︷︷ ︸
=0 d’après la RFD

On en déduit dEm

dt = 0 et alors Em = cste : l’énergie mécanique se conserve pendant le
mouvement.

d - Configuration alternative (ressort horizontal)

On considère un point matériel M , de masse m, accro-
ché à l’extrémité d’un ressort horizontal, de longueur
à vide `0 et de raideur k. Le point M peut se déplacer
sans frottement le long d’une surface horizontale. On
se place dans le référentiel terrestre, que l’on suppo-
sera galiléen.

` ~g

Analyse et mise en équation

On choisit le repère (Oxyz) avec O extrémité fixe du ressort, (Ox) horizontal, colinéaire et de même
sens que le ressort et (Oz) vertical vers le haut.

Les forces sont alors :

— Poids
−→
P = m~g = −mg~uz ;

— Rappel du ressort
−→
FR = −k (`− `0) ~uR = −k (x− `0) ~ux ;

— Réaction du support
−→
R . Pour un contact sans frottement,

−→
R est perpendiculaire à

la surface de contact. Donc ici
−→
R = Rz~uz.

On applique la seconde loi de Newton

m~a =
−→
P +

−→
FR +

−→
R

et on projète sur l’axe (Ox) :

mẍ = 0− k (x− `0) + 0

que l’on met sous forme canonique

ẍ+ ω2
0x = ω2

0xeq

avec ω0 =

√
k

m
et xeq = `0

PTSI – Lycée Dorian 5 2025-2026



Oscillations libres et forcées OS–J Oscillateur harmonique

II - Oscillateur harmonique en électricité : circuit LC
a - Positionnement du problème

On considère un circuit constitué d’une bobine d’induc-
tance L et d’un condensateur de capacité C en série,
alimentés par une source de tension idéale de fem E. E

L

C

b - Mise en équation
On complète le schéma du circuit en indiquant les grandeurs utiles.

On applique la loi des mailles
E = uL + uC

avec uL = L
di
dt

et i = C
duC

dt
On a alors

E = LC
d2u

dt2
+ u ou d2u

dt2
+

u

LC
=

E

LC

Mise sous forme canonique

d2u

dt2
+ ω2

0u = ω2
0E avec ω0 =

1√
LC

Remarque : en posant U = u− E, on a d2U
dt2 = d2u

dt2 et donc

d2U

dt2
+ ω2

0U = 0

c - Aspect énergétique
Puissance et énergie des dipôles

Puissance fournie par le générateur : Pg = Ei

Énergie stockée dans la bobine : EL = 1
2
Li2

Énergie stockée dans le condensateur : EC = 1
2
Cu2
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Bilan énergétique du circuit

On s’intéresse à la variation de l’énergie stockée dans le circuit

d
dt

(EL + EC) = Li
di
dt

+ Cu
du
dt

= LC2du
dt

d2u

dt2
+ Cu

du
dt

= C
du
dt︸ ︷︷ ︸

=i

(
LC

d2u

dt2
+ u

)
︸ ︷︷ ︸

=E

= Ei = Pg

On vérifie bien que l’énergie fournie par le générateur se retrouve stockée dans la bobine et le conden-
sateur.

III - Comportement temporel de l’oscillateur harmonique

III.1 - Résolution de l’équation canonique
La méthode pour résoudre une équation différentielle linéaire du second ordre est strictement similaire à celle
utilisée pour les équations du premier ordre : On retrouve les mêmes différentes étapes que celles vues au chapitre
précédent.

Méthode : Résolution de l’équation canonique d’un oscillateur harmonique

Soit une équation d’un oscillateur harmonique :

d2y

dt2
+ ω2

0y = f(t) = ω2
0y0(t)

La solution de cette équation est obtenue en appliquant les étapes successives suivantes :
1. On cherche yh(t) la solution générale de l’équation homogène (ou sans second membre) :

d2yh
dt2

+ ω2
0yh = 0

2. On cherche une solution particulière yp(t) de l’équation avec second membre.
3. La solution générale de l’équation avec second membre est alors

y(t) = yh(t) + yp(t)

4. On résout le problème de Cauchy : on cherche la solution qui passe par les conditions initiales.

L’étape 2 (solution particulière yp) est strictement identique à ce qui a été vu pour les équations d’ordre 1, les
techniques mises en œuvre sont les mêmes : soit une solution similaire au second membre f(t) ou y0(t), soit la
méthode de variation de la constante. Dans le cadre de ce chapitre, le second membre sera toujours constant ;
on pourra se contenter de chercher yp sous la forme d’une constante (on aura alors yp = y0).

L’étape 4 nécessite de connaitre 2 conditions initiales. Nous verrons en effet que, lors de la résolution de l’équa-
tion homogène, deux constantes d’intégration vont apparaitre au lieu d’une seule. Cela reviendra la plupart du
temps à connaitre les valeurs initiales de y (y(t = 0) = y0) et de sa dérivée ( dy

dt (t = 0) = d0). Selon le domaine
physique étudié, cela se retranscrira généralement en position et vitesse initiales en mécanique ou en tension et
courant initiaux en électricité.

Il reste à voir la méthode à appliquer pour résoudre l’étape 1 :
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Solution générale de l’équation homogène d2y

dt2
+ ω2

0y = 0

Idée : on cherche, comme pour une équation d’ordre 1, la solution sous forme d’une exponentielle :

y(t) = λ ept

On a alors dy
dt = pλ ept = py et d2y

dt2 = p2λ ept = p2y.
L’équation devient

p2y + ω2
0y = 0 soit

(
p2 + ω2

0

)
y = 0

En dehors de la fonction nulle, pour que y soit solution, il faut donc

p2 + ω2
0 = 0 équation caractéristique

Les racines sont complexes (et même imaginaires purs) : p = ±iω0.

La solution générale de l’équation homogène s’écrit alors

y(t) = λ1 e
iω0t + λ2 e

−iω0t

= λ1 (cos(ω0t) + i sin(ω0t)) + λ2 (cos(ω0t)− i sin(ω0t))

= (λ1 + λ2)︸ ︷︷ ︸
A

cos(ω0t) + [i (λ1 − λ2)]︸ ︷︷ ︸
B

sin(ω0t)

Les constantes λ1, λ2, A et B sont quelconques, leur valeur sera déterminée lors de l’étape de résolution du
problème de Cauchy. Cependant, le signal y(t) correspondant à une grandeur physique mesurable, il est réel.
On en déduit que les constantes A et B sont des réels quelconques.

Écriture alternative

On part de
y(t) = A cos(ω0t) +B sin(ω0t) avec (A,B) ∈ R2

On pose C =
√
A2 +B2 (avec C ≥ 0). On a alors

y(t) = C (α cos(ω0t)− β sin(ω0t))

avec α =
A√

A2 +B2
et β = − B√

A2 +B2

On a ainsi α2 + β2 = 1. Cela implique que

∃ϕ ∈]− π ; π]/α = cosϕ et β = sinϕ

. On a alors

y(t) = C [cos(ω0t) cosϕ− sin(ω0t) sinϕ]

= C cos (ω0t+ ϕ)
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Loi : Solution de l’équation homogène d’un oscillateur harmonique

Pour un oscillateur harmonique dont l’équation canonique est de la forme

d2y

dt2
+ ω2

0y = 0

la solution générale s’écrit sous les deux formes suivantes :

y(t) = A cos(ω0t) +B sin(ω0t) = C cos(ω0t+ ϕ)

où A, B, C et ϕ sont les constantes d’intégration avec (A, B) ∈ R2, C ∈ R+ et ϕ ∈ ]− π ; π].

Remarque : une troisième forme possible, plus rarement utilisée, est

y(t) = D sin(ω0t+ φ) avec D ∈ R+ et φ ∈ ]− π ; π]

Équivalence des deux écritures

Pour passer d’une forme à l’autre, on applique la formule trigonométrique déjà utilisée plus haut

y(t) = C cos(ω0t+ ϕ) = C [cos(ω0t) cosϕ− sin(ω0t) sinϕ]

— Par identification des termes en cos et sin, on a directement

A = C cosϕ et B = −C sinϕ

— Dans l’autre sens, on a

A2 +B2 = C2
(
cos2 ϕ+ sin2 ϕ

)
soit C =

√
A2 +B2

La détermination de ϕ est plus subtile : on peut écrire

tanϕ = −B

A

mais le passage par la fonction arctangente doit être fait avec précaution : celle-ci donne des
valeurs dans l’intervalle ] − π/2 ; π/2[ alors que ϕ est compris dans ] − π ; π]. Le problème se pose
lorsque |ϕ| > π

2 soit A < 0. On a alors

si A > 0 ϕ = − arctan
(
B

A

)
si A < 0 ϕ = π − arctan

(
B

A

)
si A = 0 ϕ =

π

2
si B > 0 , −π

2
si B < 0
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III.2 - Caractéristiques de la solution
La solution est une fonction sinusoïdale du temps de pulsation ω0. L’allure du chronogramme est donc le suivant :

Application :

t

y

Le cosinus étant 2π-périodique, on en déduit la période T du signal grâce à ω0T = 2π :

Loi : Relations pulsation–période–fréquence

T =
2π

ω0
f =

1

T
=

ω0

2π
ω0 = 2πf

Rappels : T est un temps et s’exprime en s ; f et ω0 sont homogènes à l’inverse d’un temps mais ω0 s’exprime
en rad s−1 et f en Hz.

a - Solution sous la forme y(t) = A cos(ω0t) +B sin(ω0t)

Cette écriture permet d’exprimer simplement les conditions initiales

y(t = 0) = A : donne la position (y ≡ x) / tension (y ≡ u) initiale.
On calcule

ẏ(t) = −Aω0 sin(ω0t) +Bω0 cos(ω0t)

ẏ(t = 0) = Bω0 : donne la vitesse (ẏ ≡ ẋ = vx) / le courant (ẏ ≡ u̇ = i
C

) initial.

b - Solution sous la forme y(t) = C cos(ω0t+ ϕ)

Cette écriture permet d’interpréter physiquement le signal.

C est appelée amplitude du signal et ϕ phase à l’origine
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Remarques :

— On appelle égalementvaleur crête à crête la grandeur YCC = Ymax−Ymin. Pour un signal sinusoïdal,
on a évidemment YCC = 2C.

— En anglais, l’amplitude est confondue avec la valeur crête à crête (ou peak-to-peak). Cela est
particulièrement important en TP puisque les instruments utilisés (GBF, oscilloscopes,…) utilisent
la norme anglosaxonne : si vous souhaitez avoir un signal d’amplitude « réelle » 5V, il faudra
régler l’amplitude du GBF à 10V !

— La dérivée du signal est donnée par

ẏ(t) = −Cω0 sin(ω0t+ ϕ) = Cω0 cos(ω0t+ ϕ+
π

2
)

On dit que
la dérivée
la vitesse
le courant

est en quadrature avance
avance de phase de π/2 sur

le signal
la position
la tension

.

— La dérivée seconde du signal est donnée par

ÿ(t) = −Cω2
0 cos(ω0t+ ϕ) = Cω2

0 cos(ω0t+ ϕ± π)

On dit que la dérivée
l’accélération est en opposition de phase par rapport au signal

à la position .

c - Portrait de phase
On rappelle que le portrait de phase d’un signal y(t) est la courbe paramétrée (y(t) ; ẏ(t)).

Application : Portrait de phase d’un oscillateur harmonique

On a y(t) = y(t) = C cos(ω0t+ ϕ)

et ẏ(t) = −Cω0 sin(ω0t+ ϕ).
On a alors

y2ω2
0 + ẏ2 = C2ω2

0

[
cos2(ω0t+ ϕ) + sin2(ω0t+ ϕ)

]
= C2ω2

0

=⇒ le portrait de phase est une ellipse.

y

ẏ

Remarque : le sens de parcours sur le portrait de phase doit être indiqué systématiquement. Lorsqu’on est au
dessus de l’axe des abscisses, ẏ > 0 : y est croissant. À l’inverse, en dessous de l’axe des abscisses, ẏ < 0 et y
est décroissant. On en déduit que l’ellipse est parcourue dans le sens horaire sur le portrait de phase.
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