Oscillations libres et forcées 0OS-K Oscillateur amorti

OS — Chapitre K
Oscillateur amorti en régime libre

| - Oscillateur mécanique amorti

.1 - Mise en situation : systéme masse—ressort

///////////////////

On considére un point matériel M, de masse m, accroché a l'ex-

trémité d’un ressort vertical, de longueur a vide ¢; et de raideur k.

On se place dans le référentiel terrestre, que I'on supposera galiléen

et on admet que le point M est également soumis & une force de g
frottement de type visqueux : f = —hv ou h est le coefficient de
frottement (en kgs™!).

Les forces qui s’exercent sur le point M sont son poids ?, le rappel
du ressort F'r et la force de frottement f.

On choisit un axe (Ox) vertical vers le bas ot O est I'extrémité fixe (M, m)
du ressort. On admet que le mouvement est uniquement vertical.

1.2 - Mise en équation

Cinématique

Forces

Relation Fondamentale de la dynamique

Z ?cxt =mad

On projete sur(Ox) (ie on multiplie scalairement par ) :

On réécrit pour mettre sous forme canonique
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Oscillations libres et forcées 0OS-K Oscillateur amorti

Forme canonique de I’équation différentielle

Dimension de wg et @ :

Variable centrée : X = x — x¢q

Remarque : en supprimant les frottements (ée en prenant h = 0), on retrouve bien I’équation de l'oscillateur

harmonique vue au chapitre OS-J :
d2x 9 9 k
el + W = WyTeq avec ™
1.3 - Aspect énergétique

On part de la RFD, que ’on multiplie par v, = & :
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Il - Oscillateur amorti en électricité

I1.1 - Mise en situation : circuit RLC

2 1
On consideére un circuit constitué d’une bobine d’induc- I:IR i
tance L, d'un condensateur de capacité C et d'un résis- r
tor de résistance R en série. Le condensateur est initia-
lement chargé par un générateur de Thévenin de fem E
et de résistance r. A I'instant ¢ = 0, on bascule l'inter- %L ——
rupteur K de la position (1) & la position (2). . Y — TE

11.2 - Mise en équation

On représente le circuit en ¢ > 0 en indiquant les grandeurs utiles.

Mise sous forme canonique

Dimension de wy et @ : L’analyse dimensionnelle est strictement similaire a celle menée sur 'oscillateur
en mécanique. On a donc toujours wy en rads™! et @ sans unité.

PTSI — Lycée Dorian 3 2025-2026



Oscillations libres et forcées 0OS-K Oscillateur amorti

Equation en %
i

L’équation en ¢ peut s’obtenir en dérivant ’équation canonique précédente et en écrivant %‘ =5

1.3 - Aspect énergétique
Bilan de puissance et énergie des dipoles

La variation temporelle de ’énergie dans le circuit (ie stockée dans le condensateur et la bobine) est
égale a la puissance agébrique apportée au circuit (ie puissance apportée par le générateur et puissance

dissipée dans la résistance par effet Joule) :

Méthode inverse

On part de la loi des mailles/de I’équation canonique, on multiplie par ¢ pour avoir des grandeurs
homogenes a des puissances et on en déduit le bilan énergétique.
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Il - Comportement temporel de I'oscillateur amorti

l11.1 - Méthode générale

La méthode pour résoudre une équation différentielle linéaire du second ordre est strictement identique a celle
vue pour résoudre ’équation de 'oscillateur harmonique. La seule différence sera au niveau de la recherche de
la solution générale de ’équation harmonique.

| Méthode : Résolution de I’équation canonique d’un oscillateur amorti ]
J

Soit une équation d’un oscillateur amorti :
—5 + Wiy = f(t) = wiyo(t)

ou wq est la pulsation propre du systémeﬂst Q@ le facteur de qualité. La solution de cette équation
est obtenue en appliquant les étapes successives suivantes :

1. On cherche y;(t) la solution générale de ’équation homogene (ou sans second membre) :

%y, wodyp 9
- :0
12 + 0 dt + wyyn

2. On cherche une solution particuliere y,(t) de I'équation avec second membre.

3. La solution générale de 1’équation avec second membre est alors
y(t) = yn(t) + yp(t)

4. On résout le probleme de Cauchy : on cherche la solution qui passe par les conditions initiales.

Concernant I’étape 2 (solution particuliere y,), nous nous limiterons dans le cadre de ce chapitre au cas ou le
second membre est constant (oscillateur amorti en régime libre); on pourra chercher y, sous la forme d’une
constante ( et on aura alors y, = yo).
Remarque : on peut retrouver ’équation canonique sous une autre forme :
d?y dy
t

KTl + 2aw0d— + wgy = wgyo

oll & = /2@ est le facteur d’amortissement.

111.2 - Equation canonique homogéne

w
Solution générale de I'équation homogene §j + 60;[/ + wgy =0

Idée : on cherche la solution sous la forme : y(t) = A e?".

1. C’est-a-dire la pulsation de l'oscillateur harmonique associé, sans les pertes énergétiques (frottements ou effet Joule).
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Définition : Equation caractéristique

Equation du second ordre associée & I'équation différentielle
homogene d’ordre 2 ou les coefficients des termes d’ordre égal
sont identiques dans les deux équations.

Pour une équation sous forme canonique :

Nature des racines de I’équation caractéristique

Loi : Les différents régimes transitoires

1

— Q< 3 (ie A > 0) : régime apériodique
1

— Q> 3 (ie A < 0) : régime pseudopériodique
1

— Q= 3 (ie A =0) : régime critique

I11.3 - Régime apériodique (Q < %)
Racines de I’équation caractéristiques

A >0 :il y a deux racines réelles distinctes

Solutions de I'équation homogeéne

Les solutions de I’équation différentielle homogene sont du type

A et B sont des constantes d’intégration, leur valeur sera déterminée d’apres les conditions initiales, en
résolvant le probléeme de Cauchy.

_t . . _t
Remarque : 11 < 75 donc + > L : pour t > 7, le terme en e~ 71 sera négligeable devant celui en e” 72 et on

T1 T2
aura .

pour t > 1o, y(t)= Be ™.
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Application : Circuit RLC

On cherche les solutions complétes pour u et i pour le circuit défini au [[Il On se place en régime
apériodique, on a donc

A et B sont donnés par les conditions initiales :
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1.4 - Régime pseudopériodique (Q > %)
Racines de I’équation caractéristiques

A <0 :il y a deux racines complexes conjuguées

temps de relaxation

pseudo-pulsation

pseudo-période

Solutions de I'équation homogeéne

Les solutions de I’équation différentielle homogene sont du type

A et B, C et v sont des constantes d’intégration, C' est amplitude (C > 0) et ¢ la phase a l'origine
(—m<p<m).

Application : Allure du chronogramme

On peut tracer le chronogramme pour ¢ = 0

)
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Remarques :

— si Q — 400 alors

— si Q> 1 alors w = wy 1_ﬁ

i iti _ 1
111.5 - Régime critique (Q — 2)
Racines de I’équation caractéristiques

A =0 : il y a une racine réelle double

Solutions de I'équation homogeéne

On admet que les solutions de I’équation différentielle homogene sont du type

A et B sont des constantes d’intégration, leur valeur sera déterminée d’apres les conditions initiales, en
résolvant le probleme de Cauchy.

111.6 - Interprétation physique

a - Régime transitoire
On peut remarquer que, dans les trois situations (régimes apériodique, pseudopériodique ou critique), on a
toujours
li =
Propriété :

L’équation homogene modélise uniquement le comportement de y pendant le régime transitoire. Le

comportement de y en régime permanent (pour ¢ > 7) dépend uniquement du terme de forgage (ie du

second membre de I’équation différentielle).
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En gardant la méme définition pour la durée du régime transitoire que pour les systémes du premier ordre
(temps nécessaire pour que le signal atteigne 99 % de sa valeur finale), on conserve la méme relation : la durée
du régime transitoire est de 57 (ou 37 pour atteindre 95 % de la valeur finale) avec, en régime apériodique,
T =max(ry, T2) = To.

On peut alors comparer les différents régimes :
4ori i R |
— en régime critique : 7. = -

— en régime apériodique : T, =T = 2Q ) > 70

wo (1-1/1-4Q2
— en régime pseudopériodique :7,p, = % > T¢ puisque Q > %

On peut en conclure que le régime critique est le régime pour lequel 'amortissement est le plus rapide.

b - Oscillateur mécanique

Pour le systéme masse—ressort, on a vu ) = —V;L"k

Le régime critique est atteint lorsque Q = % donc pour

he = 2vVmk.

O si h < he : frottements faibles. On a alors @ > 1/2 : régime pseudo-périodique — oscillations amorties avec
T > To.

O si h > h, : frottements importants. On a alors Q < 1/2 : régime apériodique — amortissement sans
oscillations.

c - Oscillateur électrique

Pour le circuit RLC' série, on a vu @ = %\ / %

Le régime critique est atteint lorsque Q = % donc pour

L
Ro=2/=.
C

O si R < R, : dissipation faible. On a alors @ > 1/2 : régime pseudo-périodique.

O si R > R, : dissipation importante. On a alors @ < 1/2 : régime apériodique.

1.7 - Portrait de phase

On rappelle que le portrait de phase d’un signal y(t) est la courbe paramétrée (y(t); y(t)).

Pour le systéme masse-ressort en mécanique, il s’agira donc de la courbe (x(t), v, (t)). Pour le circuit RLC' série
du _ i(t) )

en électrocinétique, il s’agira de la courbe (u(t), 5 = ).
Remarques :

— En régime libre, le régime permanent est stationnaire (ie y,., = cste et donc 1,., = 0) : attracteur se situe
) P P
nécessairement sur l'axe des abscisses.

— Lorsque la courbe est au-dessus de ’axe des abscisses, y > 0 : le portrait de phase est parcouru dans le
sens des y croissants.

— Lorsque la courbe est en-dessous de l’axe des abscisses, y < 0 : le portrait de phase est parcouru dans le
sens des y décroissants.

En fonction du type du régime transitoire, on peut distinguer deux comportements différents.
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Application : Portrait de phase d’un oscillateur amorti en régime apériodique ou critique

Y

Selon les conditions initiales et la présence d’un second membre dans 1’équation diférentielle et des
conditions initiales, d’autres configurations sont possibles :

] ] ]

Yrp # 0 Yyo=10,790#0 Yo # 0,9 #0

Application : Portrait de phase d’un oscillateur amorti en régime pseudopériodique

Yy ]

~
~
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