
Oscillations libres et forcées OS–K Oscillateur amorti

OS – Chapitre K

Oscillateur amorti en régime libre

I - Oscillateur mécanique amorti

I.1 - Mise en situation : système masse–ressort

On considère un point matériel M , de masse m, accroché à l’ex-
trémité d’un ressort vertical, de longueur à vide `0 et de raideur k.
On se place dans le référentiel terrestre, que l’on supposera galiléen
et on admet que le point M est également soumis à une force de
frottement de type visqueux : ~f = −h~v où h est le coefficient de
frottement (en kg s−1).

Les forces qui s’exercent sur le point M sont son poids
−→
P , le rappel

du ressort
−→
FR et la force de frottement ~f .

On choisit un axe (Ox) vertical vers le bas où O est l’extrémité fixe
du ressort. On admet que le mouvement est uniquement vertical.

(M, m)

`

~g

I.2 - Mise en équation
Cinématique

−−→
OM = x~ux ~v = ẋ ~ux ~a = ẍ ~ux

Forces

−→
P = mg ~ux

−→
FR = −k (x− `0) ~ux

~f = −h~v = −hẋ ~ux

Relation Fondamentale de la dynamique∑−→
F ext = m~a =⇒

m~a =
−→
P +

−→
FR + ~f

On projète sur(Ox) (ie on multiplie scalairement par ~ux) :

mẍ = mg − k(x− `0)x− hẋ

On réécrit pour mettre sous forme canonique

ẍ+
h

m
ẋ+

k

m
x = g +

k

m
`0

À l’équilibre ẋ = 0 et ẍ = 0 donc xeq = `0 +
mg
k

.
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et ẍ+
h

m
ẋ+

k

m
x =

k

m
xeq

Forme canonique de l’équation différentielle

ẍ+
ω0

Q
ẋ+ ω2

0x = ω2
0xeq

avec ω2
0 = k

m
et ω0

Q
= h

m
=⇒ Q = mω0

h
soit

ω0 =

√
k

m
et Q =

√
mk

h

Dimension de ω0 et Q :

4 [ẍ] = [ω2
0x] =⇒ T−2 = [ω2

0].
dim(ω0) = T−1 et ω0 s’exprime en rad s−1.

4 [ẍ] =
[
ω0

Q
ẋ
]

=⇒ T−2 = T−1

[Q]
T−1.

dim(Q) = 1 et Q s’exprime sans unité.

Variable centrée : X = x − xeq

On a alors Ẋ = ẋ et Ẍ = ẍ et donc

Ẍ +
ω0

Q
Ẋ + ω2

0X = 0 équation canonique homogène

Remarque : en supprimant les frottements (ie en prenant h = 0), on retrouve bien l’équation de l’oscillateur
harmonique vue au chapitre OS-J :

d2x

dt2
+ ω2

0x = ω2
0xeq avec

√
k

m

I.3 - Aspect énergétique

On part de la RFD, que l’on multiplie par vx = ẋ :

m
dvx
dt

= mg − k(x− `0)− hvx × vx

mvx
dvx
dt

= mg
dx
dt

− k(x− `0)
dx
dt

− hv2x

d
dt

(
1

2
mv2

)
︸ ︷︷ ︸

Ec

= − d
dt

(−mgx)︸ ︷︷ ︸
Ep,p

− d
dt

(
1

2
k (x− `0)

2

)
︸ ︷︷ ︸

Ep,r

−hvx · vx

dEc

dt
+

dEp,p

dt
+

dEp,r

dt
=

dEm

dt
= −hv2x = ~f · ~v︸︷︷︸

P(~f)

< 0

L’énergie mécanique diminue à cause des frottements.
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II - Oscillateur amorti en électricité

II.1 - Mise en situation : circuit RLC

On considère un circuit constitué d’une bobine d’induc-
tance L, d’un condensateur de capacité C et d’un résis-
tor de résistance R en série. Le condensateur est initia-
lement chargé par un générateur de Thévenin de fem E
et de résistance r. À l’instant t = 0, on bascule l’inter-
rupteur K de la position (1) à la position (2). .

2 1

R
i

L

r

E
Cu

K

II.2 - Mise en équation

On représente le circuit en t > 0 en indiquant les grandeurs utiles.

On applique la loi des mailles

uL + uR + u = 0 =⇒ L
di
dt

+Ri+ u = 0

avec i = C
du
dt

. Soit

LC
d2u

dt2
+RC

du
dt

+ u = 0

L

R

i

C u

Mise sous forme canonique

d2u

dt2
+

R

L

du
dt

+
u

LC
= 0

ou
d2u

dt2
+

ω0

Q

du
dt

+ ω2
0u = 0

avec ω2
0 = 1

LC
et ω0

Q
= R

L
=⇒ Q = Lω0

R
soit

ω0 =
1√
LC

et Q =
1

R

√
L

C

Dimension de ω0 et Q : L’analyse dimensionnelle est strictement similaire à celle menée sur l’oscillateur
en mécanique. On a donc toujours ω0 en rad s−1 et Q sans unité.
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Équation en i

L’équation en i peut s’obtenir en dérivant l’équation canonique précédente et en écrivant du
dt = i

C :

1

C

(
d2i

dt2
+

ω0

Q

di
dt

+ ω2
0i

)
= 0

L’équation en i est strictement identique à celle en u.

II.3 - Aspect énergétique
Bilan de puissance et énergie des dipôles

La variation temporelle de l’énergie dans le circuit (ie stockée dans le condensateur et la bobine) est
égale à la puissance agébrique apportée au circuit (ie puissance apportée par le générateur et puissance
dissipée dans la résistance par effet Joule) :

d
dt

(EC + EL) = Pg − PJ

d
dt

(
1

2
Cu2 +

1

2
Li2

)
= Ei−Ri2 = −Ri2 < 0 (ici E = 0)

Sans apport extérieur (E = 0), l’énergie stockée dans le circuit diminue.

Cu
du
dt

+ Li
di
dt

+Ri2 = 0

Or C du
dt = i donc (

u+ L
di
dt

+Ri

)
i = 0

On simplifie par i et on dérive par rapport à t :

L
d2i

dt2
+R

di
dt

+
du
dt

= 0

Comme du
dt = iC, on obtient finalement

L
d2i

dt2
+R

di
dt

+
i

C
= 0

d2i

dt2
+

R

L

di
dt

+
i

LC
= 0

On retrouve l’équation en i.

Méthode inverse

On part de la loi des mailles/de l’équation canonique, on multiplie par i pour avoir des grandeurs
homogènes à des puissances et on en déduit le bilan énergétique.(

d2u

dt2
+

ω0

Q

du
dt

+ ω2
0u

)
i = 0
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III - Comportement temporel de l’oscillateur amorti

III.1 - Méthode générale
La méthode pour résoudre une équation différentielle linéaire du second ordre est strictement identique à celle
vue pour résoudre l’équation de l’oscillateur harmonique. La seule différence sera au niveau de la recherche de
la solution générale de l’équation harmonique.

Méthode : Résolution de l’équation canonique d’un oscillateur amorti

Soit une équation d’un oscillateur amorti :

d2y

dt2
+

ω0

Q

dy
dt

+ ω2
0y = f(t) = ω2

0y0(t)

où ω0 est la pulsation propre du système 1et Q le facteur de qualité. La solution de cette équation
est obtenue en appliquant les étapes successives suivantes :

1. On cherche yh(t) la solution générale de l’équation homogène (ou sans second membre) :

d2yh
dt2

+
ω0

Q

dyh
dt

+ ω2
0yh = 0

2. On cherche une solution particulière yp(t) de l’équation avec second membre.
3. La solution générale de l’équation avec second membre est alors

y(t) = yh(t) + yp(t)

4. On résout le problème de Cauchy : on cherche la solution qui passe par les conditions initiales.

Concernant l’étape 2 (solution particulière yp), nous nous limiterons dans le cadre de ce chapitre au cas où le
second membre est constant (oscillateur amorti en régime libre) ; on pourra chercher yp sous la forme d’une
constante ( et on aura alors yp = y0).
Remarque : on peut retrouver l’équation canonique sous une autre forme :

d2y

dt2
+ 2αω0

dy
dt

+ ω2
0y = ω2

0y0

où α = 1/2Q est le facteur d’amortissement.

III.2 - Équation canonique homogène
Solution générale de l’équation homogène ÿ +

ω0

Q
ẏ + ω2

0y = 0

Idée : on cherche la solution sous la forme : y(t) = λ ept.
On a alors ẏ = pλ ept = py et d2y

dt2 = p2λ ept = p2y.
L’équation devient

p2y + p
ω0

Q
y + ω2

0y = 0 soit
(
p2 +

ω0

Q
p+ ω2

0

)
y = 0

En dehors de la fonction nulle, pour que y soit solution, il faut donc

1. C’est-à-dire la pulsation de l’oscillateur harmonique associé, sans les pertes énergétiques (frottements ou effet Joule).
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Définition : Équation caractéristique

Équation du second ordre associée à l’équation différentielle
homogène d’ordre 2 où les coefficients des termes d’ordre égal
sont identiques dans les deux équations.
Pour une équation sous forme canonique :

p2 +
ω0

Q
p+ ω2

0 = 0

Nature des racines de l’équation caractéristique

On calcule le discriminant :
∆ =

(
ω0

Q

)2

− 4ω2
0 = ω2

0

(
1

Q2
− 4

)
La nature des solutions dépend du signe de ∆.

∆ > 0 ⇐⇒ 1

Q2
− 4 > 0 ⇐⇒ 1

Q2
> 4 ⇐⇒ Q <

1

2
(car Q ≥ 0)

Loi : Les différents régimes transitoires

— Q <
1

2
(ie ∆ > 0) : régime apériodique

— Q >
1

2
(ie ∆ < 0) : régime pseudopériodique

— Q =
1

2
(ie ∆ = 0) : régime critique

III.3 - Régime apériodique
(
Q < 1

2

)
Racines de l’équation caractéristiques

∆ > 0 : il y a deux racines réelles distinctes

p1,2 = − ω0

2Q
± ω0

2

√
1

Q2
− 4 = − ω0

2Q

(
1±

√
1− 4Q2

)
Les deux racines sont négatives et [p1,2] = T−1, on posera

τ1 =
2Q

ω0

(
1 +

√
1− 4Q2

) et τ2 =
2Q

ω0

(
1−

√
1− 4Q2

)
On aura alors 0 < τ1 < τ2 et [τ1,2] = T.

Solutions de l’équation homogène

Les solutions de l’équation différentielle homogène sont du type

y(t) = Aep1t +B ep2t

ou y(t) = Ae
− t

τ1 +B e
− t

τ2

A et B sont des constantes d’intégration, leur valeur sera déterminée d’après les conditions initiales, en
résolvant le problème de Cauchy.

Remarque : τ1 < τ2 donc t
τ1

> t
τ2

: pour t � τ2, le terme en e−
t
τ1 sera négligeable devant celui en e−

t
τ2 et on

aura
pour t � τ2, y(t) ≈ B e−

t
τ2 .
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Oscillations libres et forcées OS–K Oscillateur amorti

Application : Circuit RLC

On cherche les solutions complètes pour u et i pour le circuit défini au II. On se place en régime
apériodique, on a donc

u(t) = Ae
− t

τ1 +B e
− t

τ2

i(t) = C
du
dt

= −AC

τ1
e
− t

τ1 − BC

τ2
e
− t

τ2

A et B sont donnés par les conditions initiales :

On dessine le circuit en t = 0− :
On a donc u(t = 0−) = E et i(t = 0−) = 0. C u

EL

R
i

Par continuité temporelle de la tension au bornes d’un condensateur u(t = 0+) = u(t =
0−) = E.
Par continuité temporelle du courant dans une bobine i(t = 0+) = i(t = 0−) = 0.{

u(0) = E

i(0) = 0
=⇒

{
A+B = E

−AC
τ1

− BC
τ2

= 0 =⇒ A
τ1
+ B

τ2
= 0

=⇒

A
(
1− τ2

τ1

)
= E

A
(
1− τ1

τ2

)
= E

=⇒

{
A = − τ1

τ2−τ1
E < 0

A = τ2
τ2−τ1

E > 0

Finalement u(t) = E
τ2−τ1

(
τ2 e

− t
τ2 − τ1 e

− t
τ1

)
i(t) = EC

τ2−τ1

(
e
− t

τ1 − e
− t

τ2

)
Remarque : on verifie bien [u] = V, [i] = A, u(t = 0) = E et i(t = 0) = 0.

t

u i
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III.4 - Régime pseudopériodique
(
Q > 1

2

)
Racines de l’équation caractéristiques

∆ < 0 : il y a deux racines complexes conjuguées

p1,2 = − ω0

2Q
± j

ω0

2

√
4− 1

Q2
= − ω0

2Q
± jω0

√
1− 1

4Q2

On définit :

— temps de relaxation : τ =
2Q

ω0

;

— pseudo-pulsation : ω = ω0

√
1− 1

4Q2
;

— pseudo-période : T = 2π
ω

= T0√
1− 1

4Q2

.

Remarque : on a toujours ω < ω0 et T > t0.

Solutions de l’équation homogène

Les solutions de l’équation différentielle homogène sont du type

y(t) = λ1 e
p1t + λ2 e

p2t

= λ1 e
− t

τ
+jωt + λ2 e

− t
τ
−jωt

= e−
t
τ

(
λ1 e

jωt + λ2 e
−jωt

)
ou encore

y(t) = e−
t
τ (A cos(ωt) +B sin(ωt)) = e−

t
τ C cos(ωt+ ϕ)

A et B, C et ϕ sont des constantes d’intégration, C est l’amplitude (C ≥ 0) et ϕ la phase à l’origine
(−π < ϕ ≤ π).

Application : Allure du chronogramme

On peut tracer le chronogramme pour ϕ = 0

t

y
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Remarques :

— si Q → +∞ alors τ ≈ 0 et ω ≈ ω0 et on a

y(t) ≈ C cos(ω0t+ ϕ)

On retrouve le comportement de l’oscillateur harmonique.
— si Q � 1 alors ω = ω0

√
1− 1

4Q2 ≈ ω0

La pseudo-pulsation est égale à la pulsation propre (idem pour la pseudopériode).
En pratique, pour Q = 5,

√
1− 1

4Q2 =
√

1− 1
4×52

=
√

1− 1
100

=
√
0,99 ≈ 0,995.

On a alors τ = 2Q
ω0

soit Q = τω0

2
≈ τω

2
= πτ

T
.

On peut estimer Q en lisant sur la courbe le nombre d’oscillations pendant la durée
du régime transitoire (environ 3τ).

III.5 - Régime critique
(
Q = 1

2

)
Racines de l’équation caractéristiques

∆ = 0 : il y a une racine réelle double

pc = − ω0

2Q
= − 1

ω0

puisque Q =
1

2

On pose
τc =

1

ω0

Solutions de l’équation homogène

On admet que les solutions de l’équation différentielle homogène sont du type

y(t) = (At+B) epct

ou y(t) = (At+B) e−
t
τc

A et B sont des constantes d’intégration, leur valeur sera déterminée d’après les conditions initiales, en
résolvant le problème de Cauchy.

III.6 - Interprétation physique
a - Régime transitoire
On peut remarquer que, dans les trois situations (régimes apériodique, pseudopériodique ou critique), on a
toujours

lim
t→+∞

y(t) = 0

Propriété :

L’équation homogène modélise uniquement le comportement de y pendant le régime transitoire. Le
comportement de y en régime permanent (pour t � τ) dépend uniquement du terme de forçage (ie du
second membre de l’équation différentielle).
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En gardant la même définition pour la durée du régime transitoire que pour les systèmes du premier ordre
(temps nécessaire pour que le signal atteigne 99 % de sa valeur finale), on conserve la même relation : la durée
du régime transitoire est de 5τ (ou 3τ pour atteindre 95 % de la valeur finale) avec, en régime apériodique,
τ = max(τ1, τ2) = τ2.

On peut alors comparer les différents régimes :
— en régime critique : τc = 1

ω0
;

— en régime apériodique : τap = τ2 = 2Q

ω0

(
1−

√
1−4Q2

) > τC ;

— en régime pseudopériodique :τpp = 2Q
ω0

> τC puisque Q > 1
2 .

On peut en conclure que le régime critique est le régime pour lequel l’amortissement est le plus rapide.

b - Oscillateur mécanique

Pour le système masse–ressort, on a vu Q =
√
mk
h .

Le régime critique est atteint lorsque Q = 1
2 donc pour

hc = 2
√
mk.

� si h < hc : frottements faibles. On a alors Q > 1/2 : régime pseudo-périodique → oscillations amorties avec
T > T0.

� si h > hc : frottements importants. On a alors Q < 1/2 : régime apériodique → amortissement sans
oscillations.

c - Oscillateur électrique

Pour le circuit RLC série, on a vu Q = 1
R

√
L
C .

Le régime critique est atteint lorsque Q = 1
2 donc pour

Rc = 2

√
L

C
.

� si R < Rc : dissipation faible. On a alors Q > 1/2 : régime pseudo-périodique.
� si R > Rc : dissipation importante. On a alors Q < 1/2 : régime apériodique.

III.7 - Portrait de phase
On rappelle que le portrait de phase d’un signal y(t) est la courbe paramétrée (y(t) ; ẏ(t)).

Pour le système masse–ressort en mécanique, il s’agira donc de la courbe (x(t), vx(t)). Pour le circuit RLC série
en électrocinétique, il s’agira de la courbe (u(t), du

dt = i(t)
C ).

Remarques :
— En régime libre, le régime permanent est stationnaire (ie yrp = cste et donc ẏrp = 0) : l’attracteur se situe

nécessairement sur l’axe des abscisses.
— Lorsque la courbe est au-dessus de l’axe des abscisses, ẏ > 0 : le portrait de phase est parcouru dans le

sens des y croissants.
— Lorsque la courbe est en-dessous de l’axe des abscisses, ẏ < 0 : le portrait de phase est parcouru dans le

sens des y décroissants.
En fonction du type du régime transitoire, on peut distinguer deux comportements différents.
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Application : Portrait de phase d’un oscillateur amorti en régime apériodique ou critique

t

y ẏ

y

ẏ

Selon les conditions initiales et la présence d’un second membre dans l’équation diférentielle et des
conditions initiales, d’autres configurations sont possibles :

y

ẏ

×

yrp 6= 0

y

ẏ

×

y0 = 0, ẏ0 6= 0

y

ẏ

×
×

y0 6= 0, ẏ0 6= 0

Application : Portrait de phase d’un oscillateur amorti en régime pseudopériodique

t

y

y

ẏ
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