Oscillations libres et forcées OS-L Oscillateur en RSF

OS — Chapitre L
Oscillateur en régime sinusoidal forcé

| - Régime sinusoidal forcé (RSF)

1.1 - Mise en situation

On s’intéresse dans ce chapitre a la réponse d’'un systéme du second ordre a une excitation sinusoidale. Dans
les applications du cours, le systéme sera soit mécanique (configuration masse-ressort avec amortissement par
exemple, avec une terme de forgage sinusoidal), soit électrique (circuit RLC' série par exemple, alimenté par un
GBF délivrant un signal sinusoidal).

Si on note y le signal temporel représentatif du systeme, le systéme sera régi par une équation différentielle qui,
sous forme canonique s’écrira :

Il n’y a pas de lien entre la pulsation du terme de forcage w et la pulsation propre du systéme du
second ordre wp, ni avec la pseudo-pulsation de l'oscillateur amorti en régime pseudopériodique.

Quels que soient le terme de forgage et les conditions initiales, la solution s’écrit sous la forme

y(t) = yn(t) + yp(t)
O yp est la solution de I’équation homogene et correspond a la réponse transitoire du systéme. Il est déterminé
par les caractéristiques du systéme, a travers wg et @) et par les conditions initiales.

O y, est la solution particuliére. Elle est indépendante des conditions initiales et peut étre obtenue, soit par
la méthode de variation de la constante, soit en la « devinant » en la cherchant sous une forme proche du
second membre de I’équation. Par exemple, en régime libre ol le second membre est constant, on cherche
yp sous la forme d’'une constante également.

Quelle que soit la nature du régime transitoire, on sait que . liin yn(t) = 0: le régime permanent est indépendant
——+o00

du régime transitoire (et donc des conditions initiales) et sera similaire au terme de focage.
Pour un forcage sinusoidal, on chercherait alors y, sous la forme

yp(t) =Y, cos(wt + ¢p)

On cherche alors les valeurs des parametres Y), et ¢, qui assurent que ¥, est bien solution de I’équation diffé-
rentielle. La mise en ceuvre de cette méthode « directe » s’avere étre tres lourde en pratique : il faut pour cela
calculer les dérivées premiere 9, et seconde 4, et identifier les terme en cos et en sin dans I’équation différentielle.
Nous verrons & la partie [ une méthode alternative qui sera en pratique systématiquement utilisée.

1.2 - Signal sinusoidal

Définition : Signal sinusoidal

Un signal sinusoidal est un signal qui peut s’écrire sous la forme :

2w 1
Le signal est périodique de période T'= —, la fréquence est f = 7= 5
w
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Vocabulaire :
— Sp est 'amplitude du signal (S > 0);
— w est la pulsation (exprimée en rads™! et w > 0);

—  est la phase a l'origine (en rad et ¢ €] — 7; 7]);

— wt + ¢ est la phase instantanée (en rad).

Ecriture alternative : s(t) = A cos(wt) + B sin(wt)
— pour passer d’une forme a autre on rappelle cos(a 4+ b) = cosa cosb —sina sinb;
— on a alors

So = VA2 + B2

A=S5,, cosp By .

B = S sinp = tang = —B et gp:—arctan(z) siA>0
A @:ﬂ—arctan(g) siA<0
.3 - Déphasage entre deux signaux
On considere deux signaux sinusoidaux quelconques :

s1(t) = S1 cos(wit + 1) et s1(t) = S1 cos(wat + ¢2)

Les deux signaux sont synchrones s’ils ont la méme pulsation/période/fréquence.
On définit le

Définition : Déphasage

Si les deux signaux sont synchrones

avec Ay €] —7; 7

Remarques et vocabulaire

O Ay est le déphasage du signal sp par rapport au signal sy ;

0 le déphasage du signal s; par rapport au signal sy est évidemment Ay /5 = —Apy/y ;
. . . t A 0
O s est en avance g’il atteint son maximum avafl s1. On a alors P2/t > .
retard apres Apyn <0
S1 452
t
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O Cas particuliers

Signaux en phase Opposition de phase Quadrature de phase
Ap =0 Ap ==+ Ap==+75

Il - Représentation complexe

Remarque préliminaire : en physique, nous noterons j 'imaginaire pur unité : j2 = —1.

11.1 - Définition

Soit un signal sinusoidal s(t) = Sy cos(wt + ¢). On définit le

Définition : Signal complexe associé ]
J

Sy est appelé amplitude complexe

On a donc s(t) = Sy cos(wt + ) + j So sin(wt + ¢).

Loi : Retour au signal réel ]
,—l J 3

ou encore

\. J

On retient que P'amplitude du signal réel est le module de I'amplitude complexe, la phase a l'origine son
argument : il suffit de connaitre Sy pour avoir toutes les informations sur s(t).

11.2 - Opérations en notation complexe

a - Combinaisons linéaires

Soient 2 signaux sinusoidaux s1(t) et s2(¢) synchrones (ie méme pulsation), auquels on associe les deux signaux
complexes s1(t) et sa(t).
On définit également le signal réel s(¢) issu d’une combinaison linéaire quelconque de s1(t) et sa(t) :

s(t) = ay s1(t) + ag so(t) avec (a1, ag) € R?

et son signal complexe associé s(t) (s(t) est évidemment un également signal sinusoidal de pulsation w). On a
alors

Loi : combinaison linéaire de signaux complexes ]
J
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Démonstration

b - Amplitude et phase

Soient 2 signaux sinusoidaux s1(t) = S1 cos(wt + ¢1) et s3(t) = Sz cos(wt + ¢3) synchrones, auquels on associe
les deux signaux complexes s;(t) et s3(t) d’amplitudes complexes respectives S et Ss.

| Loi : rapport d’amplitude et déphasage ]

Le rapport des amplitudes des deux signaux est

Le déphasage entre les deux signaux est donné par

Démonstration

c - Dérivation

Soit le signal sinusoidal s(¢) de pulsation w auquel on associe le signal complexe s(t). On a alors

Loi : dérivation en notation complexe ]
J
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Démonstration

Remarque : on voit directement que $ est en quadrature avance sur s.

d - Intégration

Soit s(t) un signal sinusoidal de pulsation w et S(t) LA primitive de valeur moyenne nulle (ie S(t) est également
un signal sinusoidal de pulsation w). On a alors

Loi : intégration en notation complexe

Démonstration

Remarque : on voit directement que [ s(t) d¢ est en quadrature retard sur s.

e - Limitations de la notation complexe

Il est important de se rappeler que la notation complexe ne peut étre utilisée que
— sur des signaux sinusoidaux ;

— avec des opérations linéaires.
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A En particulier, on ne peut pas l'utiliser directement pour des produits ou des quotients :

Re (uv) # Re (u) Re (v) = s159 = 51 - 52

et donc
uzzRe(g2) ou uit=u-1

ON REPASSE EN REEL AVANT TOUTE ETUDE ENERGETIQUE

I1l - Impédance complexe (en électrocinétique)

111.1 - Définition

On considere un dipole en régime sinusoidal forcé, représenté en conven-
tion récepteur.

recepteur ) _ _ o o
On note u la représentation complexe de la tension u aux bornes du L
dipdle et ¢ la représentation complexe du courant i a travers le dipole.

Définition : Impédance complexe d’un dipdle ]

Remarques :

U
On a évidemment Z = I=O : 'impédance est le rapport des amplitudes complexes de la tension et du
1o
courant. On en déduit alors
Z] = % = %’ = %l : le module de I'impédance est le rapport des amplitudes de la tension et du
courant ; B

arg(Z) = arg (%) =, — @; : Pargument de I'impédance est le déphasage de la tension par rapport au
courant.

__ [tension]

= ——1. Z et |Z| s’expriment en €, arg Z est sans dimension et s’exprime
[tension] * = = ’ =

Par analyse dimensionnelle [Z]

en radian.
— On définit également 'admittance complexe : Y = % = % Y s’exprime en siemens.
111.2 - Dipoles linéaires
Pour les trois dipoles linéaires passifs vus précédemment, on a
Loi : Impédance complexe des dipoles linéaires ]
Résistor R Bobine L Condensateur C

Résistor de résistance R

arg(Zp) =0 =

Dans un résistor, u et ¢ sont en phase.
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OS-L

Oscillateur en RSF

Bobine d’inductance L

On a donc

Dans une bobine, u est en quadrature avance par rapport a i (comportement inductif).

O lin%) |Z.] = 0 donc u — 0 : en régime permanent (stationnaire), la bobine est équivalente & un
w—r

fil/interrupteur fermé.

O

w——+00
ouvert.

Condensateur de capacité C

On a donc

Dans un condensateur, u est en quadrature retard par rapport & ¢ (comportement capacitif).

([l lirr%) |Zo| = 400 done @ — 0 : en régime permanent (stationnaire), le condensateur est équivalent
w—r

a un interrupteur ouvert.
([l

w——+00
teur fermé/un fil.

Loi : Comportements asymptotiques

lim |Z,| =400 donc i — 0: & trés haute fréquence, la bobine est équivalente & un interrupteur

lim |Zq| =0doncu — 0:4a trés haute fréquence, le condensateur est équivalent a un interrup-

Dipole

Basse fréquence
w—0

Haute fréquence
w — +00

L

I

Bobine

C
Condensateur 4{ }7

111.3 - Lois de I'électrocinétique

Propriété :

Toutes les lois linéaires de I’électrocinétique sont généralisables au RSF en notation complexe.

Cela inclut notamment :
— la loi des mailles,
— la loi des nocuds

— les associations de dipoles linéaires :

en série : Z, =2+ Z,
R Z, Z
en parallele : Z\I = 211:22 ou j\ — Z% + i
7 2025-2026
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.. tension
— les ponts diviseurs de
courant
N Thévenin
— les modeles de
Norton

— les théorémes linéaires complémentaires (superposition et Millman)

Application : Association de bobines

Déterminer I'inductance équivalente a deux bobines en série ou en paralléle.

Association en série Association en paralléle

Application : Association de condensateurs

Déterminer la capacité équivalente a deux condensateurs en série ou en parallele.

Association en série Association en paralléle
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| Exercice : Association de dipoles ]
J

Retrouver les résultats précédents en utilisant uniquement les lois de Kirchhoff, sans passer par les
impédances complexes.

IV - Résonance en intensité dans un circuit RLC série

IV.1 - Mise en situation
On considere un circuit RLC série alimenté par une
source de tension sinusoidale de fem

e(t) = Ep coswt.

On cherche & exprimer le courant i(t) dans le circuit.

Mise en équation

On annote le schéma et on écrit la loi des mailles

La solution générale de cette équation est
it) = in(t) + ip(t)

ip, est la solution générale de ’équation homogene. On sait que celle-ci correspond au régime transitoire, donc
une fois celui-ci terminé (¢ > 57), ip(t) ~ 0 et alors i(t) = i,(t). Le courant dépend uniquement du terme de
forcage. Celui-ci étant sinusoidal de pulsation w, i, et donc ¢ seront de la méme forme on pourra alors écrire

‘z(t) =i,(t) = Iy cos(wt + ¢) ‘

Il reste « seulement » a déterminer les valeurs de 'amplitude Iy et de la phase a 'origine ¢ qui assurent que
i(t) est bien solution de I’équation différentielle. Plutét que de mener des calculs complexes et lourds avec les
fonctions sinusoidales, il est de loin préférable de passer par la notation complexe.
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Oscillateur en RSF

Equation en notation complexe

En passant en notation complexe, on écrira

IV.2 - Intensité complexe

Le calcul précédent est rarement mené en pratique,
on lui préfere largement le calcul plus direct via les
impédances complexes. En passant directement le
circuit en notation complexe, on a alors :

En notant Z I'impédance équivalente aux 3 dipdles en
série (résistance, bobine et condensateur), on a directe-
ment

e=2i

avec
Z=R+Z;,+Zs

1
=R+ jL —
+7 w+ij

Expression de i et Iy

PTSI — Lycée Dorian 10
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Définition : Pulsation réduite

Pour un systeme du second ordre caractérisé par sa pulsation propre wg, on définit la pulsation réduite
x par

x est donc une grandeur adimensionnée ([z] = 1) qui permet de décrire le comportement du systéme en fonction
de la fréquence/pulsation indépendamment de la valeurs numérique de wy, et de comparer plus facilement la
réponse d’un systéme & basse (z < 1) ou haute (x > 1) fréquence en le ramenant & une méme échelle normalisée.

Expression de I,(x)

On a alors directement

IV.3 - Amplitude de l'intensité

Définition : Résonance

La résonance est le phénomene par lequel 'amplitude d’un signal d’un systéme soumis & une excitation
sinusoidale passe par un maximum en fonction de la fréquence de cette excitation. La fréquence pour
laquelle le maximum est atteint est appelée fréquence de résonance.

Amplitude Iy du courant

Pour un signal sinusoidal en notation complexe, Pamplitude est Iy = |i| = |Io].
Pour le circuit RLC' série on a donc : o

Comportement Basse Fréquence (BF, x — 0)

a partir de ’expression de I a partir du schéma
En basse fréquence, la bobine est équivalente a un
fil et le condensateur a un interrupteur ouvert, le
schéma, équivalent est alors :
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Comportement Haute Fréquence (HF, z — +4o0)

a partir de ’expression de I a partir du schéma
En haute fréquence, la bobine est équivalente a un
interrupteur ouvert et le condensateur a un fil, le
schéma équivalent est alors :

Maximum de I

O Iop(x) est une fonction positive (car Iy est 'amplitude du courant) qui tend vers 0 quand x tend
vers 0 et quand x tend vers l'infini. Elle passe donc nécessairement par un maximum.

[0 Dans ’expression de Iy, le numérateur est constant, donc le maximum est atteint lorsque le déno-
minateur est minimum.

K=

O A la résonance, on a alors, comme x — % =0,i= % et donc ¢ = % : la bobine et le condensateur
« s’annulent », le circuit a un comportement purement résistif. On peut d’ailleurs vérifier que, pour
_ A | _ 1
=1, soit w=wy = m,ZLJrZC—jLerjCW =0.

Application : Allure de la courbe Iy = f(w)

Iy
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Loi : Résonance en intensité dans un circuit RLC' série ]

O Il y a toujours résonance en intensité
O La résonance est atteinte pour z = 1

0 La pulsation de résonance est égale a la pulsation propre du systéme : w, = wy

| Définition : Bande passante ]

Lorsqu’il y a résonance, on définit la bande passante a -3 dB comme l'intervalle des pulsations pour
lesquelles 'amplitude est supérieure & I'amplitude maximale divisée par v/2. La largeur Aw de la bande
passante est alors

avec wi et wy tels que

19, max
Io(wl) = Io((.UQ) = o, et w1 <wsy

Remarques :

— On a les mémes définitions en terme de fréquence :

Af=fo—fi avec Ig(f1) = Io(f2) = Io\,}ngx
1

— Si on augmente @, le terme en @ (:c — ;) décroit plus rapidement lorsque x s’éloigne de 1 :

Plus @ est grand, plus la résonance est aigiie (on parle d’acuité de la résonance). On admettra

Loi : Largeur de la bande passante ]
J

Pour la résonance en intensité dans un circuit RLC' série

IV.4 - Phase de l'intensité
Déphasage de l'intensité

On note @ le déphasage de I'intensité i(t) par rapport a la fem e(t). En passant en notation complexe,
on a alors
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Comportements asymptotiques
O a la résonance (w = w, = wp, x =1) : on a @, = 0. i et e sont en phase : comportement résistif.

™
O en basse fréquence (w < wg, ¢ < 1) : 111% p(x) = 3 i est en quadrature avance sur e : comporte-
r—r

ment capacitif.

7r
O en haute fréquence (w > wo, x > 1) : hrf p(x) = —5 i est en quadrature retard sur e :
T—>+00

comportement inductif.

O plus @ est grand, plus la transition entre les 2 régimes asymptotiques est « brutale ».

Application : Allure de la courbe ¢ = f(w)

¥

V - Résonance en charge dans un circuit RLC série

V.1 - Mise en situation

On considére un circuit RLC série alimenté par une

source de tension sinusoidale de fem
[ ] 3000

e(t) = Ey coswt.

R
+q
e(t T C——|u
On s’intéresse maintenant a la charge ¢(¢) du condensa- ®) @ 1
teur, et donc a la tension u a ses bornes puisque g = C'u.

En passant en notation complexe, on cherche les expressions de ¢ et w.
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Oscillateur en RSF

Expression de u

On écrit la relation du pont diviseur de tension

Mise sous forme canonique

Qe

On pose comme précédemment wy = \/% et Q = %

Pulsation réduite

En posant & = w/w, on trouve également

V.2 - Amplitude de la tension
Amplitude Uy

Pour un signal sinusoidal en notation complexe, I'amplitude est Uy = |u| = |Uy|. On a donc ici

PTSI — Lycée Dorian 15
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Comportement Basse Fréquence (BF, x — 0)

a partir de 'expression de Uy a partir du schéma
En basse fréquence, la bobine est équivalente & un
fil et le condensateur a un interrupteur ouvert, le
schéma équivalent est alors :

Comportement Haute Fréquence (HF, x — +400)

a partir de ’expression de Iy a partir du schéma
En basse fréquence, la bobine est équivalente & un
interrupteur ouvert et le condensateur a un fil, le
schéma, équivalent est alors :

Maximum de Ug ?

Dans l'expression de Up, le numérateur est constant, donc le maximum est atteint lorsque le dénomi-
nateur est minimum.
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Application : Allure de la courbe Uy = f(w)

Pour généraliser au maximum les résultats représentés, on utilisera une grandeur réduite x = «/w, en
abscisse mais également en ordonnée :u* = Uo/E,.

«_ Uo
u Eo
1_

1 z:w%)

Loi : Résonance en charge dans un circuit RLC' série

1
O Il y a résonance en charge si|Q > —

V2

[0 La pulsation de résonance est w, = wp 4/1 — 555

Remarques :
O On a toujours w, < wy et Uy > Up.
O I ne faut pas confondre la condition de résonance (@ > %) et la condition pour que le régime transitoire
soit pseudopériodique (Q > %) En particulier, s’il y a résonance en RSF, le régime transitoire préalable

était nécessairement pseudopériodique.

O 1l ne faut pas confondre la pulsation de résonance (w, = wp /1 — ﬁ) et la pseudo-pulsation du régime

pseudopériodique éventuel (2 = wy /1 — quﬁ)

O Si @ > 1, on retrouve w, = wy et on aura également pour la bande passante Aw =
Uo,m — 400

w

o

. Pour Q — 400,

Q|
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V.3 - Phase de la tension

Déphasage de la tension

On note ¢ le déphasage de la tension aux bornes du condensateur u(¢) par rapport a la fem e(t). En
passant en notation complexe, on a alors

Expression alternative

Comportements asymptotiques

e
On peut se baser sur ’expression précédente de ¢ , ou bien directement de u = . — 5
+5—T
Q
O a la pulsation propre (w = wp, z = 1) : on a ¢ = —% + arctan (0) ou u = £ = —jQe et donc
Q
¢ = —%. u est en quadrature retard sur e.
O en basse fréquence (w < wp, z < 1) : ili)rbcp(x) = ngrg ouur~ §=eetdoncp=0 uete

sont en phase.

ouur —<; =—%5 et donc p=m.

NN

O en haute fréquence (w > wp, x> 1) : lim ¢(z) = —g -

r—r+00

u et e sont en opposition de phase.

O plus @ est grand, plus la transition entre les 2 régimes asymptotiques est « brutale ».
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Application : Allure de la courbe ¢ = f(w)
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VI - Résonance en mécanique — Analogie électromécanique

L’équation différentielle donnant la charge ¢ aux bornes du condensateur dans un circuit RLC série est :

ol ¢y (t) est le terme de forgage, avec

Y= To “RVC Tt

Pour le systéme masse-ressort amorti, on a pareillement

ol z¢(t) est le terme de forgage, avec

|k vmk dz
Wy = E et Q—T et ’U—E

Les deux systémes menant & des équations différentielles mathématiquement identiques, on peut établir une table
d’analogies électromécaniques, comparant les grandeurs du systéme oscillant électrocinétique typique (circuit
RLC série) et de Doscillateur mécanique linéaire typique (systéme masse-ressort avec amortissement fluide).
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Tableau des analogies électromécaniques

Grandeurs électriques Grandeurs mécaniques
charge du condensateur q élongation du ressort x —lp
intensité du courant 1= % vitesse de la masse v=1a
inductance de la bobine L masse m
résistance du circuit R coefficient de frottement linéaire h
.y . . 1
capacité du condensateur C inverse de la raideur du ressort T
L " 1.5 e Lo
énergie magnétique Erag = 5 Li énergie cinétique E.= 3 mu
AN 1g¢° L . 1 2
énergie électrique Felee = 30 énergie potentielle E, = 3 k(x—1p)
puissance Joule Py = Ri? puissance des frottements Py = —hv?
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