
Oscillations libres et forcées OS–L Oscillateur en RSF

OS – Chapitre L

Oscillateur en régime sinusoïdal forcé

I - Régime sinusoïdal forcé (RSF)

I.1 - Mise en situation
On s’intéresse dans ce chapitre à la réponse d’un système du second ordre à une excitation sinusoïdale. Dans
les applications du cours, le système sera soit mécanique (configuration masse–ressort avec amortissement par
exemple, avec une terme de forçage sinusoïdal), soit électrique (circuit RLC série par exemple, alimenté par un
GBF délivrant un signal sinusoïdal).

Si on note y le signal temporel représentatif du système, le système sera régi par une équation différentielle qui,
sous forme canonique s’écrira :

ÿ + ω0

Q ẏ + ω2
0y = f(t) = ω2

0g(t) = ω2
0Y0 cos(ωt)

Exclamation-Triangle Il n’y a pas de lien entre la pulsation du terme de forçage ω et la pulsation propre du système du
second ordre ω0, ni avec la pseudo-pulsation de l’oscillateur amorti en régime pseudopériodique.

Quels que soient le terme de forçage et les conditions initiales, la solution s’écrit sous la forme

y(t) = yh(t) + yp(t)

� yh est la solution de l’équation homogène et correspond à la réponse transitoire du système. Il est déterminé
par les caractéristiques du système, à travers ω0 et Q et par les conditions initiales.

� yp est la solution particulière. Elle est indépendante des conditions initiales et peut être obtenue, soit par
la méthode de variation de la constante, soit en la « devinant » en la cherchant sous une forme proche du
second membre de l’équation. Par exemple, en régime libre où le second membre est constant, on cherche
yp sous la forme d’une constante également.

Quelle que soit la nature du régime transitoire, on sait que lim
t→+∞

yh(t) = 0 : le régime permanent est indépendant
du régime transitoire (et donc des conditions initiales) et sera similaire au terme de foçage.
Pour un forçage sinusoïdal, on chercherait alors yp sous la forme

yp(t) = Yp cos(ωt+ ϕp)

On cherche alors les valeurs des paramètres Yp et ϕp qui assurent que yp est bien solution de l’équation diffé-
rentielle. La mise en œuvre de cette méthode « directe » s’avère être très lourde en pratique : il faut pour cela
calculer les dérivées première ẏp et seconde ÿp et identifier les terme en cos et en sin dans l’équation différentielle.
Nous verrons à la partie II une méthode alternative qui sera en pratique systématiquement utilisée.

I.2 - Signal sinusoïdal
Définition : Signal sinusoïdal

Un signal sinusoïdal est un signal qui peut s’écrire sous la forme :

s(t) = S0 cos(ωt+ ϕ)

Le signal est périodique de période T =
2π

ω
, la fréquence est f =

1

T
=

ω

2π
.
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Vocabulaire :
— S0 est l’amplitude du signal (S ≥ 0) ;
— ω est la pulsation (exprimée en rad s−1 et ω > 0) ;
— ϕ est la phase à l’origine (en rad et ϕ ∈]− π ; π]) ;
— ωt+ ϕ est la phase instantanée (en rad).

Écriture alternative : s(t) = A cos(ωt) +B sin(ωt)
— pour passer d’une forme à l’autre on rappelle cos(a+ b) = cos a cos b− sin a sin b ;
— on a alors

{
A = Sm cosϕ
B = −S0 sinϕ

=⇒


S0 =

√
A2 +B2

tanϕ = −B
A et

{
ϕ = − arctan

(
B
A

)
siA > 0

ϕ = π − arctan
(
B
A

)
siA < 0

I.3 - Déphasage entre deux signaux
On considère deux signaux sinusoïdaux quelconques :

s1(t) = S1 cos(ω1t+ ϕ1) et s1(t) = S1 cos(ω2t+ ϕ2)

Les deux signaux sont synchrones s’ils ont la même pulsation/période/fréquence.
On définit le

Définition : Déphasage

∆ϕ2/1 = (ω2t+ ϕ2)− (ω1t+ ϕ1) = ((ω2 − ω1)t+ (ϕ2 − ϕ1)

Si les deux signaux sont synchrones

∆ϕ2/1 = ϕ2 − ϕ1 = cste

avec ∆ϕ2/1 ∈]− π ; π]

Remarques et vocabulaire

� ∆ϕ2/1 est le déphasage du signal s2 par rapport au signal s1 ;
� le déphasage du signal s1 par rapport au signal s2 est évidemment ∆ϕ1/2 = −∆ϕ2/1 ;

� s2 est en avance
retard s’il atteint son maximum avant

après s1. On a alors ∆ϕ2/1 > 0
∆ϕ2/1 < 0

.

t

s1 s2
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� Cas particuliers
Signaux en phase

∆ϕ = 0
Opposition de phase

∆ϕ = ±π

Quadrature de phase
∆ϕ = ±π

2

II - Représentation complexe
Remarque préliminaire : en physique, nous noterons j l’imaginaire pur unité : j2 = −1.

II.1 - Définition
Soit un signal sinusoïdal s(t) = S0 cos(ωt+ ϕ). On définit le

Définition : Signal complexe associé

s = S0 e
jωt+ϕ = S0 ejωt avec S0 = S0 e

ϕ

S0 est appelé amplitude complexe

On a donc s(t) = S0 cos(ωt+ ϕ) + j S0 sin(ωt+ ϕ).

Loi : Retour au signal réel

s(t) = Re (s(t))
ou encore

S0 = |S0| et ϕ = arg
(
S0

)
On retient que l’amplitude du signal réel est le module de l’amplitude complexe, la phase à l’origine son
argument : il suffit de connaître S0 pour avoir toutes les informations sur s(t).

II.2 - Opérations en notation complexe
a - Combinaisons linéaires
Soient 2 signaux sinusoïdaux s1(t) et s2(t) synchrones (ie même pulsation), auquels on associe les deux signaux
complexes s1(t) et s2(t).
On définit également le signal réel s(t) issu d’une combinaison linéaire quelconque de s1(t) et s2(t) :

s(t) = α1 s1(t) + α2 s2(t) avec (α1, α2) ∈ R2

et son signal complexe associé s(t) (s(t) est évidemment un également signal sinusoïdal de pulsation ω). On a
alors

Loi : combinaison linéaire de signaux complexes

s = α1 s1 + α2 s2
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Démonstration

Re(s) = Re(α1 s1 + α2 s2) = α1 Re(s1) + α2 Re(s2) = α1 s1 + α2 s2 = s

b - Amplitude et phase
Soient 2 signaux sinusoïdaux s1(t) = S1 cos(ωt+ ϕ1) et s2(t) = S2 cos(ωt+ ϕ2) synchrones, auquels on associe
les deux signaux complexes s1(t) et s2(t) d’amplitudes complexes respectives S1 et S2.

Loi : rapport d’amplitude et déphasage

Le rapport des amplitudes des deux signaux est

S2

S1
=

∣∣∣∣S2

S1

∣∣∣∣ = ∣∣∣∣s2s1
∣∣∣∣

Le déphasage entre les deux signaux est donné par

∆ϕ2/1 = arg
(
S2

S1

)
= arg

(
S2

)
− arg

(
S1

)
= arg

(
s2

s1

)
= arg

(
s2
)
− arg

(
s1
)

Démonstration

s2

s1
=

S2 e
jωt

S1 ejωt
=

S2

S1

=
S2 e

j ϕ2

S1 ej ϕ1
=

S2

S1

ej(ϕ2−ϕ1)

On a alors
∣∣∣∣s2s1
∣∣∣∣ = ∣∣∣∣S2

S1

∣∣∣∣ = S2

S1

et ∆ϕ2/1 = ϕ2 −ϕ2 = arg
(
S2

)
− arg

(
S1

)
= arg

(
S2

S1

)
= arg

(
s2

s1

)
= arg

(
s2
)
− arg

(
s1
)

c - Dérivation
Soit le signal sinusoïdal s(t) de pulsation ω auquel on associe le signal complexe s(t). On a alors

Loi : dérivation en notation complexe

ds
dt = jωs ou d

dt ≡ ×jω
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Démonstration

On a s(t) = S0 cos(ωt+ ϕ) et donc
ds
dt

= −S0ω sin(ωt+ ϕ) = S0ω cos (ωt+ ϕ+ π/2)

Par ailleurs s = S0 e
j(ωt+ϕ) et donc

ds
dt

= S0jω ej(ωt+ϕ) = jωs

Et on a bien également

Re
(

ds
dt

)
= Re (jωs) = Re (S0jω (cos (ωt+ ϕ) + j sin (ωt+ ϕ)))

= −S0ω sin (ωt+ ϕ) =
ds
dt

Remarque : on voit directement que ṡ est en quadrature avance sur s.

d - Intégration
Soit s(t) un signal sinusoïdal de pulsation ω et S(t) LA primitive de valeur moyenne nulle (ie S(t) est également
un signal sinusoïdal de pulsation ω). On a alors

Loi : intégration en notation complexe

S =

∫
s dt = 1

jωs
ou

∫
dt ≡ × 1

jω

Démonstration

On a

S(t) =

∫
s(t) dt =

∫
S0 cos(ωt+ ϕ) dt

=
S0

ω
sin(ωt+ ϕ) (+0) =

S0

ω
cos(ωt+ ϕ− π/2)

La grandeur complexe associée est

S =
S0

ω
ej(ωt+ϕ−π/2) =

S0

ω
e−jπ/2 ej(ωt+ϕ) =

S0

jω
ej(ωt+ϕ) =

s

jω

Remarque : on voit directement que
∫
s(t)dt est en quadrature retard sur s.

e - Limitations de la notation complexe
Il est important de se rappeler que la notation complexe ne peut être utilisée que

— sur des signaux sinusoïdaux ;
— avec des opérations linéaires.
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Exclamation-Triangle En particulier, on ne peut pas l’utiliser directement pour des produits ou des quotients :

Re (uv) 6= Re (u)Re (v) =⇒ s1s2 = s1 · s2

et donc
u2 = Re

(
u2
)

ou u i = u · i

On repasse en réel avant toute étude énergétique

III - Impédance complexe (en électrocinétique)

III.1 - Définition
On considère un dipôle en régime sinusoïdal forcé, représenté en conven-
tion récepteur.
On note u la représentation complexe de la tension u aux bornes du
dipôle et i la représentation complexe du courant i à travers le dipôle.

Définition : Impédance complexe d’un dipôle

Z =
u

i

Remarques :

— On a évidemment Z =
U0

I0
: l’impédance est le rapport des amplitudes complexes de la tension et du

courant. On en déduit alors
— |Z| =

∣∣∣ui ∣∣∣ = ∣∣∣U0

I0

∣∣∣ = U0

I0
: le module de l’impédance est le rapport des amplitudes de la tension et du

courant ;

— arg(Z) = arg
(

u
i

)
= ϕu − ϕi : l’argument de l’impédance est le déphasage de la tension par rapport au

courant.
— Par analyse dimensionnelle [Z] = [tension]

[tension] . Z et |Z| s’expriment en Ω, argZ est sans dimension et s’exprime
en radian.

— On définit également l’admittance complexe : Y =
1

Z
=

i

u
. Y s’exprime en siemens.

III.2 - Dipôles linéaires
Pour les trois dipôles linéaires passifs vus précédemment, on a

Loi : Impédance complexe des dipôles linéaires

Résistor R

ZR = R

Bobine L

ZL = jLω

Condensateur C

ZC =
1

jCω

Résistor de résistance R

u = Ri =⇒ u = Ri =⇒ ZR = R

arg(ZR) = 0 =⇒ arg(u) = arg(i) =⇒ ϕu = ϕi.

Dans un résistor, u et i sont en phase.
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Bobine d’inductance L

u = L
di
dt

=⇒ u = L
di
dt

= L(jωi) =⇒ ZL = jLω

On a donc
|ZL| = U0

I0
= Lω

et arg(ZL) = π/2 =⇒ arg(u)− arg(i) = π/2 =⇒ ϕu = ϕi + π/2.

Dans une bobine, u est en quadrature avance par rapport à i (comportement inductif).

� lim
ω→0

|ZL| = 0 donc u → 0 : en régime permanent (stationnaire), la bobine est équivalente à un
fil/interrupteur fermé.

� lim
ω→+∞

|ZL| = +∞ donc i → 0 : à très haute fréquence, la bobine est équivalente à un interrupteur
ouvert.

Condensateur de capacité C

i = C
du
dt

=⇒ i = C
du
dt

= C(jωu) =⇒ ZC =
1

jCω

On a donc
|ZC | = U0

I0
= 1

Cω

et arg(ZL) = −π/2 =⇒ arg(u)− arg(i) = −π/2 =⇒ ϕu = ϕi − π/2.

Dans un condensateur, u est en quadrature retard par rapport à i (comportement capacitif).

� lim
ω→0

|ZC | = +∞ donc i → 0 : en régime permanent (stationnaire), le condensateur est équivalent
à un interrupteur ouvert.

� lim
ω→+∞

|ZC | = 0 donc u → 0 : à très haute fréquence, le condensateur est équivalent à un interrup-
teur fermé/un fil.

Loi : Comportements asymptotiques

Dipôle Basse fréquence Haute fréquence
ω → 0 ω → +∞

Bobine
L

Condensateur

C

III.3 - Lois de l’électrocinétique
Propriété :

Toutes les lois linéaires de l’électrocinétique sont généralisables au RSF en notation complexe.

Cela inclut notamment :
— la loi des mailles,
— la loi des nœuds
— les associations de dipôles linéaires :

en série : Zs = Z1 + Z2

en parallèle : Z‖ =
Z1 Z2

Z1+Z2
ou 1

Z‖
= 1

Z1
+ 1

Z2
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— les ponts diviseurs de tension
courant

— les modèles de Thévenin
Norton

— les théorèmes linéaires complémentaires (superposition et Millman)

Application : Association de bobines

Déterminer l’inductance équivalente à deux bobines en série ou en parallèle.

Association en série

L1 L2

≡
Z1 = jL1ω Z2 = jL2ω

≡
Zs = Z1 + Z2 Zs = jL1ω + jL2ω

= j(L1 + L2)ω

≡
Ls

avec Ls = L1 + L2

Association en parallèle

L1 L2 ≡ Z1 Z2

Z1 = jL1ω

Z2 = jL2ω

≡
Z‖ Z‖ =

(jL1ω)(jL2ω)

jL1ω + jL2ω

= j
L1L2

L1 + L2
ω

≡
L‖

avec L‖ =
L1L2

L1 + L2

ou 1

L‖
=

1

L1
+

1

L2

Application : Association de condensateurs

Déterminer la capacité équivalente à deux condensateurs en série ou en parallèle.

Association en série

C1 C2

≡
Z1 = 1

jC1ω
Z2 = 1

jC2ω

≡
Zs = Z1 + Z2

Zs =
1

jC1ω
+

1

jC2ω

=
1

jω

(
1

C1
+

1

C2

)

≡
Cs avec 1

Cs
=

1

C1

1

C2

ou Cs =
C1C2

C1 + C2

Association en parallèle

C1 C2≡ Z1 Z2

Z1 =
1

jC1ω

Z2 =
1

jC2ω

≡
Z‖ 1

Z‖
=

1

Z1

+
1

Z2

= j (C1 + C2)ω

≡
C‖

avec C‖ = C1 + C2
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Exercice : Association de dipôles

Retrouver les résultats précédents en utilisant uniquement les lois de Kirchhoff, sans passer par les
impédances complexes.

IV - Résonance en intensité dans un circuit RLC série

IV.1 - Mise en situation

On considère un circuit RLC série alimenté par une
source de tension sinusoïdale de fem

e(t) = E0 cosωt.

On cherche à exprimer le courant i(t) dans le circuit.

e(t)

R

i

L

C

Mise en équation

On annote le schéma et on écrit la loi des mailles

e = uR + uL + uC = Ri+ L
di
dt

+ uC

On dérive et on obtient

de
dt

= R
di
dt

+ L
d2i

dt2
+

duC

dt
= R

di
dt

+ L
d2i

dt2
+

i

C

ou encore
d2i

dt2
+

R

L

di
dt

+
1

LC
i =

1

L

de
dt

dont la forme canonique est

d2i

dt2
+

ω0

Q

di
dt

+ ω2
0i = ω2

0C
de
dt

avec ω0 =
1√
LC

et Q =
1

R

√
L

C

La solution générale de cette équation est

i(t) = ih(t) + ip(t)

ih est la solution générale de l’équation homogène. On sait que celle-ci correspond au régime transitoire, donc
une fois celui-ci terminé (t > 5τ), ih(t) ≈ 0 et alors i(t) = ip(t). Le courant dépend uniquement du terme de
forçage. Celui-ci étant sinusoïdal de pulsation ω, ip et donc i seront de la même forme on pourra alors écrire

i(t) = ip(t) = I0 cos(ωt+ ϕ)

Il reste « seulement » à déterminer les valeurs de l’amplitude I0 et de la phase à l’origine ϕ qui assurent que
i(t) est bien solution de l’équation différentielle. Plutôt que de mener des calculs complexes et lourds avec les
fonctions sinusoïdales, il est de loin préférable de passer par la notation complexe.
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Équation en notation complexe

En passant en notation complexe, on écrira

i → i
d
dt

→ ×jω
d2

dt2
→ (jω2) = −ω2

L’équation devient alors

−ω2 i+
ω0

Q
jω i+ ω2

0 i = ω2
0C e

soit [(
ω2
0 − ω2

)
+ j

ω0ω

Q

]
i = jCω2

0ω e

IV.2 - Intensité complexe
Le calcul précédent est rarement mené en pratique,
on lui préfère largement le calcul plus direct via les
impédances complexes. En passant directement le
circuit en notation complexe, on a alors :

En notant Z l’impédance équivalente aux 3 dipôles en
série (résistance, bobine et condensateur), on a directe-
ment

e = Z i

avec

Z = R+ ZL + ZC

= R+ jLω +
1

jCω

e

R i ZL

ZC

≡ e Z

i

Expression de i et I0

i =
e

Z
=

e/R

1 + j
R

(
Lω − 1

Cω

) =
e/R

1 +
j

R

√
L

C︸ ︷︷ ︸
=jQ

√
LCω − 1√

LC︸ ︷︷ ︸
=1/ω0

ω


Soit

i =
e/R

1 + jQ
(

ω
ω0

− ω0

ω

)
Comme i = I0 ejωt et e = E0 e

jωt, on en déduit directement

I0 =
E0/R

1 + jQ
(

ω
ω0

− ω0

ω

)
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Définition : Pulsation réduite
Pour un système du second ordre caractérisé par sa pulsation propre ω0, on définit la pulsation réduite
x par

x =
ω

ω0

x est donc une grandeur adimensionnée ([x] = 1) qui permet de décrire le comportement du système en fonction
de la fréquence/pulsation indépendamment de la valeurs numérique de ω0, et de comparer plus facilement la
réponse d’un système à basse (x � 1) ou haute (x � 1) fréquence en le ramenant à une même échelle normalisée.

Expression de I0(x)

On a alors directement

I0 =
E0/R

1 + jQ
(
x− 1

x

)

IV.3 - Amplitude de l’intensité
Définition : Résonance

La résonance est le phénomène par lequel l’amplitude d’un signal d’un système soumis à une excitation
sinusoïdale passe par un maximum en fonction de la fréquence de cette excitation. La fréquence pour
laquelle le maximum est atteint est appelée fréquence de résonance.

Amplitude I0 du courant

Pour un signal sinusoïdal en notation complexe, l’amplitude est I0 = |i| = |I0|.
Pour le circuit RLC série on a donc :

I0 = |i| =
∣∣I0∣∣ =

∣∣∣∣∣ E0/R

1 + jQ
(
x− 1

x

) ∣∣∣∣∣
soit

I0 =
E0/R√

1 +Q2
(
x− 1

x

)2
Comportement Basse Fréquence (BF, x → 0)

à partir de l’expression de I0

On voit

lim
x→0

1 +Q2

(
x− 1

x

)2

= +∞

et donc
lim
x→0

I0 = 0

à partir du schéma
En basse fréquence, la bobine est équivalente à un
fil et le condensateur à un interrupteur ouvert, le
schéma équivalent est alors :

e

R
i L

C

Le circuit est ouvert, on a donc i(t) ≈ 0 et donc
I0 ≈ 0.
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Comportement Haute Fréquence (HF, x → +∞)

à partir de l’expression de I0

On voit

lim
x→0

1 +Q2

(
x− 1

x

)2

= +∞

et donc
lim
x→0

I0 = 0

à partir du schéma
En haute fréquence, la bobine est équivalente à un
interrupteur ouvert et le condensateur à un fil, le
schéma équivalent est alors :

e

R
i

L

C

Le circuit est ouvert, on a donc i(t) ≈ 0 et donc
I0 ≈ 0.

Maximum de I0

� I0(x) est une fonction positive (car I0 est l’amplitude du courant) qui tend vers 0 quand x tend
vers 0 et quand x tend vers l’infini. Elle passe donc nécessairement par un maximum.

� Dans l’expression de I0, le numérateur est constant, donc le maximum est atteint lorsque le déno-
minateur est minimum.

1 +Q2

(
x− 1

x

)2

minimum ⇐⇒ Q2

(
x− 1

x

)2

minimum

L’expression étant un carré, le minimum est atteint en 0, soit pour

x− 1

x
= 0 et donc x = 1

� À la résonance, on a alors, comme x− 1
x = 0, i = e

R et donc i = e
R : la bobine et le condensateur

« s’annulent », le circuit a un comportement purement résistif. On peut d’ailleurs vérifier que, pour
x = 1, soit ω = ω0 = 1√

LC
, ZL + ZC = jLω + 1

jCω = 0.

Application : Allure de la courbe I0 = f(ω)

ω

I0

ω0
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Loi : Résonance en intensité dans un circuit RLC série
� Il y a toujours résonance en intensité
� La résonance est atteinte pour x = 1

� La pulsation de résonance est égale à la pulsation propre du système : ωr = ω0

Définition : Bande passante

Lorsqu’il y a résonance, on définit la bande passante à -3 dB comme l’intervalle des pulsations pour
lesquelles l’amplitude est supérieure à l’amplitude maximale divisée par

√
2. La largeur ∆ω de la bande

passante est alors

∆ω = ω2 − ω1

avec ω1 et ω2 tels que
I0(ω1) = I0(ω2) =

I0,max√
2

et ω1 < ω2

Remarques :
— On a les mêmes définitions en terme de fréquence :

∆f = f2 − f1 avec I0(f1) = I0(f2) =
I0,max√

2

— Si on augmente Q, le terme en Q
(
x− 1

x

)
décroit plus rapidement lorsque x s’éloigne de 1 :

Plus Q est grand, plus la résonance est aigüe (on parle d’acuité de la résonance). On admettra

Loi : Largeur de la bande passante

Pour la résonance en intensité dans un circuit RLC série

∆ω =
ω0

Q
ou ∆f =

f0
Q

IV.4 - Phase de l’intensité
Déphasage de l’intensité

On note ϕ le déphasage de l’intensité i(t) par rapport à la fem e(t). En passant en notation complexe,
on a alors

ϕ = arg i− arg e = arg
(
i

e

)
= arg

(
1/R

1 + jQ
(
x− 1

x

))

= − arg
(
1 + jQ

(
x− 1

x

))
On a donc

tanϕ = −Q

(
x− 1

x

)
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Oscillations libres et forcées OS–L Oscillateur en RSF

Comme Re
(
1 + jQ

(
x− 1

x

))
= 1 > 0, on a

ϕ = − arctan
[
Q

(
x− 1

x

)]

Comportements asymptotiques

� à la résonance (ω = ωr = ω0, x = 1) : on a ϕr = 0. i et e sont en phase : comportement résistif.

� en basse fréquence (ω � ω0, x � 1) : lim
x→0

ϕ(x) =
π

2
. i est en quadrature avance sur e : comporte-

ment capacitif.

� en haute fréquence (ω � ω0, x � 1) : lim
x→+∞

ϕ(x) = −π

2
. i est en quadrature retard sur e :

comportement inductif.
� plus Q est grand, plus la transition entre les 2 régimes asymptotiques est « brutale ».

Application : Allure de la courbe ϕ = f(ω)

ω

ϕ

ω0

V - Résonance en charge dans un circuit RLC série

V.1 - Mise en situation
On considère un circuit RLC série alimenté par une
source de tension sinusoïdale de fem

e(t) = E0 cosωt.

On s’intéresse maintenant à la charge q(t) du condensa-
teur, et donc à la tension u à ses bornes puisque q = Cu.

e(t)

R L

C
+q

−q
u

En passant en notation complexe, on cherche les expressions de q et u.
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Expression de u

On écrit la relation du pont diviseur de tension

u =
ZC

R + ZL + ZC

e =

1
jCω

R + jLω + 1
jCω

e

soit
u =

e

1 + jRCω − LCω2

Mise sous forme canonique

On pose comme précédemment ω0 = 1√
LC

et Q = 1
R

√
L
C

On remarque RC = R
√

C
L

√
LC = 1

Qω0
et donc

u =
e

1 + j ω
Qω0

− ω2

ω2
0

On a également q = Cu = Ce

1+j ω
Qω0

−ω2

ω2
0

.

Pulsation réduite

En posant x = ω/ω0, on trouve également

u =
e

1 + jx
Q
− x2

ainsi que q = Cu = Ce

1+ jx
Q
−x2

.

V.2 - Amplitude de la tension
Amplitude U0

Pour un signal sinusoïdal en notation complexe, l’amplitude est U0 = |u| = |U0|. On a donc ici

U0 = |u| =

∣∣∣∣∣ e

1 + jx
Q − x2

∣∣∣∣∣
soit

U0 =
E0√

(1− x2)
2
+
(

x
Q

)2

PTSI – Lycée Dorian 15 2025-2026



Oscillations libres et forcées OS–L Oscillateur en RSF

Comportement Basse Fréquence (BF, x → 0)

à partir de l’expression de U0

On voit

lim
x→0

(
1− x2

)2
+

(
x

Q

)2

= 1

et donc
lim
x→0

U0 = E0

à partir du schéma
En basse fréquence, la bobine est équivalente à un
fil et le condensateur à un interrupteur ouvert, le
schéma équivalent est alors :

e(t) = E0 cosωt
R

uR = 0

L

uL = 0

C u = e

Comportement Haute Fréquence (HF, x → +∞)

à partir de l’expression de I0

On voit

lim
x→0

(
1− x2

)2
+

(
x

Q

)2

= +∞

et donc
lim
x→0

U0 = 0

à partir du schéma
En basse fréquence, la bobine est équivalente à un
interrupteur ouvert et le condensateur à un fil, le
schéma équivalent est alors :

e

R L

C u = 0

Maximum de U0 ?

Dans l’expression de U0, le numérateur est constant, donc le maximum est atteint lorsque le dénomi-
nateur est minimum.

On cherche le minimum de
(
1− x2

)2
+

(
x

Q

)2

.

On pose pour simplifier l’étude

X = x2 et f(X) = (1−X)2 +
X

Q2

f est minimum quand f ′(x) = 0 avec f ′(X) = 2(1−X) + 1
Q2

f ′(X) = 0 ⇐⇒ 2(1−X) +
1

Q2
= 0 ⇐⇒ X = 1− 1

2Q2

et donc xr =

√
1− 1

2Q2

Pour que ce maximum existe, il faut X = x2 > 0 soit 1− 1
2Q2 > 0 =⇒ 1

2Q2 < 1 ou

Q >
1√
2

PTSI – Lycée Dorian 16 2025-2026



Oscillations libres et forcées OS–L Oscillateur en RSF

Application : Allure de la courbe U0 = f(ω)

Pour généraliser au maximum les résultats représentés, on utilisera une grandeur réduite x = ω/ω0 en
abscisse mais également en ordonnée :u? = U0/E0.

x = ω
ω0

u? = U0

E0

1

1

Loi : Résonance en charge dans un circuit RLC série

� Il y a résonance en charge si Q >
1√
2

� La pulsation de résonance est ωr = ω0

√
1− 1

2Q2

Remarques :
� On a toujours ωr < ω0 et U0,r > U0.
� Il ne faut pas confondre la condition de résonance (Q > 1√

2
) et la condition pour que le régime transitoire

soit pseudopériodique (Q > 1
2 ). En particulier, s’il y a résonance en RSF, le régime transitoire préalable

était nécessairement pseudopériodique.

� Il ne faut pas confondre la pulsation de résonance (ωr = ω0

√
1− 1

2Q2 ) et la pseudo-pulsation du régime

pseudopériodique éventuel (Ω = ω0

√
1− 1

4Q2 ).

� Si Q � 1, on retrouve ωr ≈ ω0 et on aura également pour la bande passante ∆ω ≈ ω0

Q . Pour Q → +∞,
U0,m → +∞
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V.3 - Phase de la tension
Déphasage de la tension

On note ϕ le déphasage de la tension aux bornes du condensateur u(t) par rapport à la fem e(t). En
passant en notation complexe, on a alors

ϕ = argu− arg e = arg
(
u

e

)
= arg

(
1

1 + jx
Q
− x2

)

= − arg
(
(1− x2) +

jx

Q

)
On a donc

tanϕ = − x/Q

1− x2

L’expression finale de ϕ dépend également du signe de 1− x2 :

ϕ =


− arctan

(
x/Q
1−x2

)
si x < 1 (1− x2 > 0)

π − arctan
(

x/Q
1−x2

)
si x > 1 (1− x2 < 0)

π
2

si x = 1 (1− x2 = 0)

Expression alternative

On part de

ϕ = − arg
(
(1− x2) +

jx

Q

)
= − arg

[
j

(
x

Q
− j(1− x2)

)]
= −π

2
− arg

(
x

Q
− j(1− x2)

)
= −π

2
− arctan

(
−1− x2

x/Q

)
(car x

Q
≥ 0)

et donc

ϕ = −π

2
+ arctan

(
1− x2

x/Q

)

Comportements asymptotiques

On peut se baser sur l’expression précédente de ϕ , ou bien directement de u =
e

1 + jx
Q − x2

� à la pulsation propre (ω = ω0, x = 1) : on a ϕ = −π
2 + arctan (0) ou u = e

j
Q

= −jQe et donc
ϕ = −π

2 . u est en quadrature retard sur e.

� en basse fréquence (ω � ω0, x � 1) : lim
x→0

ϕ(x) = −π

2
+

π

2
ou u ≈ e

1 = e et donc ϕ = 0. u et e

sont en phase.

� en haute fréquence (ω � ω0, x � 1) : lim
x→+∞

ϕ(x) = −π

2
− π

2
ou u ≈ e

−x2 = − e
x2 et donc ϕ = π.

u et e sont en opposition de phase.
� plus Q est grand, plus la transition entre les 2 régimes asymptotiques est « brutale ».
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Application : Allure de la courbe ϕ = f(ω)

ω

ϕ
ω0

−π
2

−π

VI - Résonance en mécanique – Analogie électromécanique
L’équation différentielle donnant la charge q aux bornes du condensateur dans un circuit RLC série est :

d2q

dt2
+

ω0

Q

dq
dt

+ ω2
0q = ω2

0qf(t)

où qf (t) est le terme de forçage, avec

ω0 =
1√
LC

et Q =
1

R

√
L

C
et i =

dq
dt

Pour le système masse–ressort amorti, on a pareillement

d2x

dt2
+

ω0

Q

dx
dt

+ ω2
0x = ω2

0xf(t)

où xf (t) est le terme de forçage, avec

ω0 =

√
k

m
et Q =

√
mk

h
et v =

dx
dt

Les deux systèmes menant à des équations différentielles mathématiquement identiques, on peut établir une table
d’analogies électromécaniques, comparant les grandeurs du système oscillant électrocinétique typique (circuit
RLC série) et de l’oscillateur mécanique linéaire typique (système masse–ressort avec amortissement fluide).
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Tableau des analogies électromécaniques

Grandeurs électriques Grandeurs mécaniques

charge du condensateur q élongation du ressort x− l0

intensité du courant i = dq
dt vitesse de la masse v = ẋ

inductance de la bobine L masse m

résistance du circuit R coefficient de frottement linéaire h

capacité du condensateur C inverse de la raideur du ressort 1

k

énergie magnétique Emag =
1

2
L i2 énergie cinétique Ec =

1

2
mv2

énergie électrique Eelec =
1

2

q2

C
énergie potentielle Ep =

1

2
k (x− l0)

2

puissance Joule PJ = R i2 puissance des frottements Pf = −h v2
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