
Filtrage OS–M Filtrage linéaire

OS – Chapitre M

Filtrage linéaire

I - Signaux périodiques

I.1 - Définitions
Définition : Signal périodique

Un signal s(t) est périodique s’il se répète à l’identique dans le temps. Le plus petit intervalle de répétition
est appelé période T . On peut alors écrire

s(t+ T ) = s(T ) ∀t ∈ R

Remarques :
— T est homogène à un temps et s’exprime en s.
— On a également s(t+ pT ) = s(t) ∀t ∈ R, p ∈ Z.

— La fréquence f est le nombre de répétitions du signal par unité de temps. On a évidemment f =
1

T
.

f est homogène à l’inverse d’un temps et s’exprime en Hz.
— Il s’agit évidemment d’une modélisation, un signal parfaitement pérodique (∀t) n’existe pas.

Définition : Valeur moyenne

La valeur moyenne, notée 〈s(t)〉 d’un signal périodique s(t) est définie par

〈s〉 = 1

T

∫ t0+T

t0

s(t) dt

Remarques :
— 〈s〉 a la même dimension que s. Elle est parfois notée s.
— 〈s〉 est indépendant de la valeur de la valeur de t0 choisie. On prendra fréquemment t0 = 0 ou t0 = −T

2 .
— L’opérateur « valeur moyenne » est linéaire : on aura, pour deux signaux pérodiques quelconques s1 et s2

de même période

〈λ1s1 + λ2s2〉 = λ1〈s1〉+ λ2〈s2〉 ∀ (λ1, λ2) ∈ R2 mais 〈s1s2〉 6= 〈s1〉 〈s2〉 et 〈s2〉 6= 〈s〉2

— Pour un signal impair, 〈s〉 = 0.

— Pour un signal pair 〈s〉 = 2
T

∫ T/2

0
s(t)dt

— Pour un signal sinusoïdal s(t) = Sm cos(ωt+ ϕ), 〈s〉 = 0.
— Pour un signal sinusoïdal avec offset s(t) = S0 + Sm cos(ωt+ ϕ), 〈s〉 = S0.

Définition : Valeur efficace
La valeur efficace, notée Seff d’un signal périodique s(t) est définie par

Seff =
√

〈s2〉 =

√
1

T

∫ t0+T

t0

s2(t) dt
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Signal sinusoïdal

Pour un signal sinusoïdal s(t) = Sm cos(ωt+ ϕ), on a

S2
eff =

S2
m

T

∫ T

0

cos2(ωt+ ϕ)dt

Méthode 1

sin(a) = cos
(
a+

π

2

)
=⇒ 1

T

∫ T

0

cos2(ωt+ ϕ) dt = 1

T

∫ T

0

sin2(ωt+ ϕ) dt

De plus

cos2 a+ sin2 a = 1 =⇒ 1

T

∫ T

0

cos2(ωt+ ϕ) dt+ 1

T

∫ T

0

sin2(ωt+ ϕ) dt = 1

Méthode 2

cos2 a =
1

2
(cos(a− b) + cos(a+ b)) =

1

2
(1 + cos(2a))

et donc
1

T

∫ T

0

cos2(ωt+ ϕ) dt = 1

2T

∫ T

0

1 + cos(2(ωt+ ϕ)) dt

Au final
1

T

∫ T

0

cos2(ωt+ ϕ) dt = 〈cos2(ωt+ ϕ)〉 = 1

2

Loi : Valeur efficace dun signal sinusoïdal

Pour un signal sinusoïdal s(t) = Sm cos(ω + ϕ)

Seff =
Sm√
2
=

√
2

2
Sm

Remarques :
— Pour un signal sinusoïdal avec offset s(t) = S0 + Sm cos(ω + ϕ)

S2
eff =

1

T

∫ t0+T

t0

(
S2
0 + 2S0Sm cos(ω + ϕ) + S2

m cos2(ω + ϕ)
)

dt =⇒ S2
eff = S2

0 +
S2
m

2

— En général, les grandeurs énergétiques associées à un signal s sont proportionnelles au signal au carré :
par exemple Ec = 1

2mv2 en mécanique ou P = ui = Ri2 = u2

R pour la puissance dissipée par effet Joule
en élecrtocinétique.
Si on note k le coefficient de proportionnalité (P = ks2), la puissance moyenne sera alors

〈P〉 = 〈ks2〉 = k〈s2〉 = kS2
eff

Le comportement énergétique moyen du système pour un signal périodique sera le même que pour un
signal stationnaire de valeur Seff.

— Par exemple, la tension du réseau électrique domestique est un signal sinusoïdal de fréquence f = 50Hz
et de valeur efficace Seff = 230V : son amplitude est Sm =

√
2× 230 = 325V.
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I.2 - Décomposition en séries de Fourier
On admet la loi suivante

Loi : Décomposition d’un signal pérodique

Tout signal périodique, de période T , fréquence f et pulsation ω peut s’écrire comme une combinaison
linéaire (ie superposition) de signaux sinusoïdaux de fréquences multiples de f

s(t) = S0 +
+∞∑
n=1

an cos(nωt) + bn sin(nωt) = S0 +
+∞∑
n=1

cn cos(nωt+ ϕn)

avec (an, bn) ∈ R2, cn ∈ R+ et ϕn ∈]− π ; π].

Remarques :
— S0 est la valeur moyenne du signal : S0 = 〈s〉.
— Le terme en n = 1 s’appelle le mode fondamental. Il a la même période/fréquence/pulsation que le

signal.
— Pour n > 1, le terme de fréquence nf s’appelle harmonique de rang n (l’harmonique de rang 1 n’existe

pas, le premier harmonique est celui de rang 2).
— cn est l’amplitude et ϕn la phase à l’origine de l’harmonique de rang n (ou du fondamental pour n = 1).
— On retrouve les relations classiques pour tout signal sinusoïdal

cn =
√
a2n + b2n tanϕn = − bn

an
cosϕn =

an
cn

sinϕn = −bn
cn

— On peut montrer

an =
2

T

∫ T

0

s(t) cos(nωt)dt

bn =
2

T

∫ T

0

s(t) sin(nωt)dt

— Si s(t) est paire, alors bn = 0 ∀n : la décomposition en série de Fourier ne contient que des cos.
— Si s(t) est impaire, alors an = 0 ∀n : la décomposition en série de Fourier ne contient que des sin.

Définition : Spectre d’un signal

Le spectre d’amplitude d’un signal est la repésentation sur un graphe en fréquence ou pulsation des am-
plitudes des harmoniques. Il s’agit donc d’un spectre discret(seules certaines fréquences sont présentes).
Par exemple, pour un signal de fréquence f0 (ou de pulsation ω0)

0
x = f

f0
= ω

ω0

Amplitude

1 2 3 4 5 6 7 8 9 10

Remarques :
— En général, les amplitudes cn décroissent avec n.
— On peut également tracer le spectre des phases à l’origine ϕn. Il s’agit également d’un spectre discret.
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Valeur efficace

La valeur efficace du signal est donnée par

S2
eff =

1

T

∫ T

0

[
S0 +

+∞∑
n=1

cn cos(nωt+ ϕn)

]2
dt

Le développement du terme au carré mène des termes en

cos(nωt+ ϕn) cos(mωt+ ϕm)

On applique cos a cos b = 1
2
(cos(a+ b) + cos(a− b)) soit

cos(nωt+ϕn) cos(mωt+ϕm) =
1

2
[cos ((n+m)ωt+ (ϕn + ϕm)) + cos ((n−m)ωt+ (ϕn − ϕm))]

et donc en reportant dans l’expression de Seff

1

T

∫ T

0

cos(nωt+ ϕn) cos(mωt+ ϕm) =

1

2T

∫ T

0

cos [(n+m)ωt+ (ϕn + ϕm)] dt︸ ︷︷ ︸
=0

+
1

2T

∫ T

0

cos [(n−m)ωt+ (ϕn − ϕm)] dt︸ ︷︷ ︸
= 1

2
sin=m, 0 sinon

Au final

S2
eff = S2

0 +
+∞∑
n=1

c2n
2

= S2
eff = S2

0 +
+∞∑
n=1

S2
eff,n

Généralisation : transformée de Fourier
Cette décomposition en superposition de signaux sinusoïdaux peut se généraliser à tout signal s(t) quelconque,
non périodique. Toutes les pulsations peuvent être présentes, on passe alors en notation complexe et on peut
écrire

s(t) =
1√
2π

∫ +∞

−∞
ŝ(ω) ejωt dω

Toutes les fréquences pouvant être présentes dans le signal, on passe d’un spectre d’amplitude discret à un
spectre continu (par exemple le spectre d’émission des sources lumineuses, cf chapitre OS-A).

I.3 - Principe du filtrage
Définition : Filtre

Un filtre est un dispositif qui agit sur un signal en modifiant son spectre. Son rôle principal est d’extraire
la partie utile d’un signal correspondant à un domaine de fréquence défini. Dans le cas d’un signal
périodique, cela se traduit par une modification des harmoniques présentes : leur amplitude peut être
augmentée ou diminuée et leur phase ajustée.

Un filtre linéaire a son fonctionnement décrit par une équation différentielle linéaire à coefficient
constants

p∑
k=0

ak
dke(t)

dtk
=

q∑
k=0

bk
dks(t)

dtk
(1.1)

où e(t) est le signal en entrée et s(t) le signal en sortie.

L’ordre du filtre est max(p, q) (avec en général q ≥ p).
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Filtrage linéaire d’un signal sinusoïdal
Pour un signal purement sinusoïdal de pulsation ω, on passe en formalisme complexe, avec les grandeurs com-
plexes associées e et s et en appliquant la règle de dérivation en notation complexe : d

dt ≡ jω et donc dk

dtk ≡ (jω)k.

L’équation de fonctionnement du filtre 1.1 devient alors(
p∑

k=0

ak(jω)k

)
e =

(
q∑

k=0

bk(jω)k

)
s

que l’on peut réécrire sous forme de fraction rationnelle (ie rapport de deux polynômes) en ω :

s

e
=

∑p
k=0 a

k(jω)k∑q
k=0 b

k(jω)k
(1.2)

Filtrage linéaire d’un signal périodique
Un signal périodique pouvant être exprimé sous la forme d’une superposition (ie combinaison linéaire) de signaux
sinusoïdaux, et le filtre étant lui-même linéaire, on peut en déduire que le signal de sortie est la superposition
des réponses du filtre à chaque harmonique du signal d’entrée.
Le spectre de sortie est inclus dans le spectre d’entrée (il n’y a pas de nouvelles composantes qui n’étaient
initialement pas présentes).

Filtrage non-linéaire
Dans le cas d’un filtre non-linéaire, la relation entre e et s n’est plus linéaire, on peut voir apparaitre des
nouvelles fréquences dans le signal de sortie qui n’étaient pas présentes dans le signal d’entrée

Exemple : filtre s(t) = k e2(t)

Pour un signal sinusoïdal e(t) = Em cos(ω0t)

s(t) = kE2
m cos2(ω0t)

=
kEm

2
[1 + cos(2ω0t)]

ωω0

e

II - Fonction de transfert d’un quadripôle linéaire
Les dispositifs qui seront mis en œuvre dans un circuit électrique pour réaliser un filtre linéaire seront caractérisés
par une grandeur en entrée (en général une tension ve) et une grandeur en sortie (en général une tension vs).
Ils auront donc 4 bornes les reliant au reste du circuit.

II.1 - Quadripôle
Définition : Quadripôle

Un quadripôle est un élément de circuit relié au
reste du circuit par 4 bornes : en général deux
bornes sont reliées au(x) source(s) (elles sont alors
appelées bornes d’entrée) et deux au(x) charge(s)
(elles sont alors appelées bornes de sortie).

On note alors ve et vs les tensions d’entrée et de sortie et ie et is les courants d’entrée et de sortie, le côté
« entrée » est en général orienté en convention récepteur, le côté « sortie » en convention générateur.
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Définition : Quadripôle linéaire

Un quadripôle linéaire est un quadripôle où les grandeurs d’entrée et de sortie sont reliées par une
combinaison linéaire de leurs dérivées. Par exemple, en prenant ve et vs

p∑
k=0

ak
dkve
dtk

=

q∑
k=0

bk
dkvs
dtk

(1.3)

II.2 - Fonction de transfert

Pour mener l’étude d’un quadripôle linéaire en
régime sinusoïdal forcé, on passe en notation
complexe. Le quadripôle peut alors être
caractérisé par ses impédances d’entrée Ze

et de sortie Zs. Afin de relier la tension de
sortie vs à la tension d’entrée ve, on complète
cette modélisation par l’ajout d’une source de
tension idéale :

La fonction de transfert H du quadripôle est
alors

ie is

ve vs

Définition : Fonction de transfert

H =

(
vs
ve

)
is=0

=

(
V s

V e

)
is=0

Remarques :
— En écrivant l’équation 1.3 de fonctionnement du quadripôle en notation complexe, on obtient une fraction

rationnelle en jω :

H =

∑p
k=0 a

k(jω)k∑q
k=0 b

k(jω)k
(1.4)

— La fonction de transfert est le rapport des tensions de sortie et d’entrée, circuit ouvert du côté de sortie.
Si on branche une charge, on a alors vs = H ve + Zs is.

— La notion de la fonction de transfert H peut se généraliser à ni’importe quel rapport entre grandeur de
sortie et grandeur d’entrée en notation complexe.

La fonction de transfert dépend évidemment de la pulsation ω et H(jω) étant une grandeur complexe, on peut
interpréter séparément son module et son argument.

Gain linéaire
Le gain linéaire G est le rapport des amplitudes des signaux d’entrée et de sortie. On peut alors écrire, pour un
filtre linéaire en notation complexe,

Définition : Gain linéaire

G(ω) = |H(jω)| =
∣∣∣∣vsve
∣∣∣∣ = ∣∣∣∣Vs

Ve

∣∣∣∣ = Vs,m

Ve,m
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Déphasage
Le déphasage entre signal de sortie et signal d’entrée est donné par l’argument de H :

ϕ(ω) = arg (H(jω)) = arg
(
vs

ve

)
= arg

(
Vs

Ve

)
= ϕs − ϕe

II.3 - Diagramme de Bode
Comme à la fois G et ω peuvent varier énormément, et couvrir plusieurs ordres de grandeur, nous allons utiliser
une échelle logarithmique pour représenter la fonction de transfert H. Au lieu de progresser linéairement, elle
augmente par facteurs multiplicatifs (×10, ×100…). Cela permet :

— de visualiser sur un même graphique des valeurs très petites et très grandes ;
— de mettre en évidence des tendances ou des lois de type puissance ;
— de simplifier la lecture lorsque les variations sont exponentielles ou s’étendent sur de nombreux ordres de

grandeur.

Échelle logarithmique : on représente log(x) à la place de x :

Définition : Gain en décibels

GdB = 20 log(G) = 20 log (|H|) = 20 log
(
Vs,m

Ve,m

)
Remarques :

— si G(ω2) = 10G(ω1) alors GdB(ω2) = GdB(ω1) + 20 dB ;
— si G(ω2) =

1
10G(ω1) alors GdB(ω2) = GdB(ω1)− 20dB ;

— si G(ω2) = 2G(ω1) alors GdB(ω2) = GdB(ω1) + 20 log 2 ≈ GdB(ω1) + 6 dB (log 2 ≈ 0,301) ;
— si G(ω2) =

1
2G(ω1) alors GdB(ω2) = GdB(ω1)− 6dB ;

— si G(ω2) =
√
2G(ω1) alors GdB(ω2) = GdB(ω1) + 10 log 2 ≈ GdB(ω1) + 3 dB ;

— si G(ω2) =
1√
2
G(ω1) alors GdB(ω2) = GdB(ω1)− 3dB.

� Si on s’intéresse au rapport des puissances moyennes en entrée et en sortie, on a en général

Pe = 〈kv2e〉 = k〈v2e〉 = kV 2
e,eff

et de façon identique Ps = kV 2
s,eff.

Le gain linéaire en puissance est alors Ps

Pe
=

V 2
s,eff

V 2
e,eff

et en décibels

20 log
(
Vs,eff

Ve,eff

)
= 10 log

(
V 2
s,eff

V 2
e,eff

)
= 10 log

(
Ps

Pe

)
� La bande-passante à −3dB permet donc de définir l’intervalle de fréquences où

— l’amplitude est divisée par un facteur
√
2/2,

— la puissance est divisée par 2.

Définition : Diagramme de Bode

Représentation de GdB et ϕ en fonction de ω (ou f ou x) avec une échelle logarithmique en abscisse.

PTSI – Lycée Dorian 7 2025-2026



Filtrage OS–M Filtrage linéaire

Un diagramme de Bode complet est donc un ensemble de deux graphes :
— Diagramme de Bode en gain : on représente le gain en décibel en fonction de la pulsation (ou de la pulsation

réduite) en échelle logarithmique en abscisse GdB(ω) = 20 log(G(ω))

— Diagramme de Bode en phase : on représente la phase en fonction de la pulsation (ou de la pulsation
réduite) en échelle logarithmique en abscisse : ϕ(ω)

Pente du diagramme en gain :

Si on considère deux pulsations ω1 et ω2, la pente du dia-
gramme de Bode en gain entre ces deux points est donnée
par

pente =
GdB(ω2)−GdB(ω1)

log(ω2)− log(ω1

En prenant une décade ω2 = 10ω1),

log(ω2)− log(ω1) = log
(
ω2

ω1

)
= 10

ω

GdB

ω1

×

ω2

×

La pente s’exprimera en dB/décade (en général multiple de 20).

II.4 - Types de filtres
Pour un signal e(t) quelconque, périodique de période T , de pulsation ω, la décomposition en série de Fourier
permet d’écrire :

e(t) = E0 +

+∞∑
n=1

En cos(nωt+ ϕn)

soit en représentation complexe

e(t) = E0 +

+∞∑
n=1

En e
j(nωt+ϕn) =

+∞∑
n=0

en

Le filtre étant linéaire , le signal en sortie du filtre sera la superposition des réponses de chaque harmonique de
pulsation nω :

sn = H(jnω) en avec H(jnω) = G(nω) ejϕ(nω)

Le signal réel en sortie sera alors donné par

sn(t) = Re(sn(t) = G(0)E0 +

+∞∑
n=0

G(nω)En cos(nωt+ ϕn + ϕ(nω))

L’allure du diagramme de Bode en gain permet d’identifier, pour un filtre donné, les pulsations (ou fréquences)
transmises et celles qui sont atténuées. Pour décrire qualitativement ce comportement, on caractérise un filtre
par son ordre et sa nature.

Ordre du filtre
L’ordre du filtre est le degré maximal de la dérivée qui intervient dans l’équation reliant l’entrée et la sortie
(cf équation 1.1). Il s’agit donc également de l’exposant du terme en ω le plus élevé intervenant dans la fraction
rationnelle définissant la fonction de transfert (cf équation 1.4). La quasi-totalité des filtres utilisés sont d’ordre
1 ou 2.
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Nature du filtre
La nature d’un filtre indique qualitativement quelles plages de fréquences sont transmises. On distingue géné-
ralement trois comportements types : passe-bas, passe-haut et passe-bande.

Application : Comportements archétypaux des filtres

Passe-Bas

f

G

Passe-Haut

f

G

Passe-Bande

f

G

La fréquence limite entre le domaine où le signal est transmis et celui où il est atténué est appelée fréquence
de coupure.

Il ne s’agit toutefois que de modèles idéalisés : dans la réalité, un filtre ne peut pas couper totalement les
fréquences indésirables d’un seul coup. La transition entre les fréquences transmises et atténuées est toujours
progressive.

IV - Filtres classiques d’ordre 2
De façon générale, la fonction de transfert d’un filtre d’ordre peut se mettre sous la forme

H(jω) =
N0 +N1(jω) +N2(jω)

2

D0 +D1(jω) +D2(jω)2
avec D2 6= 0 (1.5)

Filtres classiques d’ordre 2

On peut déterminer les comportements asymptotiques :

B.F. : lim
ω→0

H =
N0

D0

H.F. : lim
ω→+∞

H =
N2

D2

On retrouve alors les 3 types classiques de filtre :
� passe-bas : N2 = 0 ;
� passe-haut : N0 = 0 ;
� passe-bande : N0 = N2 = 0.

Remarque : il existe aussi le filtre coupe-bande, avec N1 = 0 (et N0 6= 0 et N2 6= 0).

De la même façon que les filtres d’ordre 1 sont basés sur des circuits d’ordre 1, les filtres d’ordre 2 seront basés
sur des circuits d’ordre 2. On retrouvera les notations et phénomènes vus dans les chapitres précédents (OS-K
et OS-L) :

— forme canonique des équations différentielles et en notation complexe,
— apparition de la pulsation propre ω0 et du facteur de qualité Q,
— phénomène de résonance (uniquement si Q > 1/

√
2 pour la résonance en tension).
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IV.1 - Passe-haut d’ordre 2
Fonction de transfert de la forme :

H(jω) =
A0

−ω2

ω2
0

1 + j
Q

ω
ω0

− ω2

ω2
0

=
A0

(
−x2

)
1 + jx

Q − x2
avec x =

ω

ω0

Diagramme asymptotique

En B.F. (x � 1) :
H(jω) ≈ −A0x

2

et donc GdB = 20 log(A0) + 40 logx et ϕ = π

En H.F. (x � 1) :

H(jω) ≈ −A0x
2

−x2
= A0

et donc GdB = 20 log(A0) et ϕ = 0

Le diagramme de Bode en gain en fonction de la pulsation réduite x est tracé ci-dessous pour A0 = 1 et pour
différentes valeurs de Q.

On retient que :
— L’asymptote à basse fréquence de la courbe du gain a pour pente +40 dB/décade.
— L’asymptote à haute fréquence de la courbe du gain est une droite horizontale.
— Les asymptotes se croisent en x = 1 (soit ω = ω0 ou f = f0).
— Si le filtre ne présente pas de résonance (Q < 1/

√
2), le diagramme de Bode réel reste toujours en dessous

du diagramme asymptotique.
— Le diagramme de Bode réel se rapproche le plus du diagramme asymptotique lorsque le filtre est à la

limite de la résonance (Q = 1/
√
2).

IV.2 - Passe-bas d’ordre 2
Fonction de transfert de la forme :

H(jω) =
A0

1 + j
Q

ω
ω0

− ω2

ω2
0

=
A0

1 + jx
Q − x2

L’asymptote à basse fréquence de la courbe du gain est une droite horizontale.
L’asymptote à haute fréquence de la courbe du gain a pour pente -40 dB/décade.
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Le diagramme de Bode en fonction de la pulsation réduite x = ω/ω0 est tracé ci-dessous pour A0 = 1 et pour
Q = 10 (courbe marron, avec résonance), Q = 1/

√
2 (courbe rouge, au plus proche des asymptotes) et Q = 1/10

(courbe orange, sans résonance et éloignée des asymptotes).

IV.3 - Passe-bande d’ordre 2
Fonction de transfert de la forme :

H(jω) =
A0

j
Q

ω
ω0

1 + j
Q

ω
ω0

− ω2

ω2
0

=
A0

jx
Q

1 + xj
Q − x2

ou H(jω) =
A0

1 + jQ
(

ω
ω0

− ω0

ω

) =
A0

1 + jQ
(
x− 1

x

)
L’asymptote à basse fréquence de la courbe du gain a pour pente +20 dB/décade.
L’asymptote à haute fréquence de la courbe du gain a pour pente -20 dB/décade.

Le diagramme de Bode en fonction de la pulsation réduite x = ω/ω0 est tracé ci-dessous pour A0 = 1 et pour
Q = 10 (courbe marron, avec résonance), Q = 1/

√
2 (courbe rouge, au plus proche des asymptotes) et Q = 1/10

(courbe orange, sans résonance et éloignée des asymptotes).

V - Choix d’un filtre
La question centrale est désormais : comment choisir un filtre adapté à un besoin donné ? L’objectif est en
effet de préserver (ou éventuellement amplifier) la partie utile d’un signal, tout en atténuant les composantes
indésirables.
Ce choix dépend de plusieurs éléments : la nature du signal d’entrée, les caractéristiques du signal utile, ainsi
que le type de perturbations à éliminer (bruits basse ou haute fréquence, parasites impulsionnels, etc.).
La première étape consiste donc à identifier clairement les critères que le filtre devra respecter.
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Filtrage OS–M Filtrage linéaire

V.1 - Cahier des charges
Le cahier des charges permet de définir précisément les caractéristiques que doit vérifier le filtre. On y trouve
notamment :

� bande-passante (fréquences à conserver) :
— gain nominal souhaité
— éventuellement tolérance par rapport à ce gain nominal ou encore gain minimal et maximal accep-

tables
� bandes atténuées (fréquences à éliminer) :

— atténuation minimale (ou gain maximal) exigée
— éventuellement tolérance par rapport à cette atténuation minimale
— éventuellement pente minimale du gain

V.2 - Gabarit d’un filtre
Le gabarit est la traduction graphique du cahier des charges dans le diagramme de Bode en gain. ll met en
évidence les zones « interdites » et on y identifiera des points critiques que le filtre devra impérativement
respecter.

Application : Gabarit d’un filtre passe-bande

Cahier des charges :
— bande passante définie par [fp1 ; fp2]

— bandes atténuées : [0 ; fa1] et [fa2 ; +∞] (avec fa1 < fp1 < fp2 < fa2)
— gain nominal dans la bande passante Gn avec une tolérance ±∆G

— gain maximal dans la bande amortie Ga

Gabarit associé :

f (échelle
logarithmique)

GdB

fa1 fa2fp1 fp2

Gn

Ga

Gn +∆G

Gn −∆G

Identification des points critiques

A ; B ; C ; D ; E
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Gabarit des filtres de référence

V.3 - Choix du filtre
On peut maintenant sélectionner un filtre approprié (ordre, nature, fréquence(s) de coupure,…) en vérifiant qu’il
respecte l’ensemble des critères définis au niveau du cahier des charges, et en s’appuyant pour cela sur le gabarit
et en particulier sur les points critiques identifiés à l’étape précédente.
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Filtrage OS–M Filtrage linéaire

VI - Filtrage d’un signal créneau

VI.1 - Filtre passe-bas d’ordre 1
Expérience Filtre RC avec R = 1 kΩ et C = 160 nF, ce qui assure fc = 1 kHz.

e(t)

R
i

C s(t)

oscillo 1 oscillo 2

On réalise l’expérience pour 3 fréquences différentes : f1 = 10Hz, f2 = 10 kHz et fc = 300Hz.

Observations
— Exp. 1 : on retrouve en sortie le même signal que l’entrée.
— Exp. 2 : on obtient un signal triangle de même fréquence que le créneau, mais très atténué en amplitude.
— Exp. 3 : on obtient un signal « en dents de requin », peu indentifiable, de même fréquence que le signal

créneau.

Interprétation On superpose le diagramme de Bode du filtre et le spectre du signal d’entrée :

— Exp. 1 : toutes les composantes du signal d’entrée sont conservées en terme d’amplitude et ne sont pas
déphasées : on verra donc un signal très ressemblant au signal créneau d’entrée en sortie.

— Exp. 2 : toutes les composantes sont fortement atténuées et déphasées de π/2. On voit donc un signal
faible en amplitude et qui semble « décalé ». On peut aussi expliquer la forme triangulaire du signal : en
effet, une asymptote de -20 dB/déc correspond dans le domaine complexe à multiplier par jω, c’est-à-dire
à intégrer.

— Exp. 3 : les premières composantes sont peu atténuées, mais le déphasage change grandement pour chaque
composante. On obtient donc un signal peu caractéristique, mais de même fréquence puisque les basses
fréquences sont globalement conservées.
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VI.2 - Filtre passe-haut d’ordre 1
Expérience Filtre CR avec R = 1 kΩ et C = 160 nF, ce qui assure fc = 1 kHz.

e(t)

C

i

R s(t)

oscillo 1 oscillo 2

On réalise l’expérience pour 3 fréquences différentes : f1 = 300Hz, f2 = 10Hz et fc = 10 kHz.

Observations
— Exp. 1 : on obtient un signal « en dents de requin », peu identifiable, de même fréquence que le signal

créneau. on retrouve en sortie le même signal que l’entrée.
— Exp. 2 : on obtient un signal presque nul, sauf au niveau des fronts montants et descendants du signal

carré.
— Exp. 3 : on obtient un signal proche de l’entrée, mais sans l’offset.

Interprétation On superpose le diagramme de Bode du filtre et le spectre du signal d’entrée :

— Exp. 1 : certaines composantes sont conservées, d’autres atténuées, toutes ont un déphasage différent. On
obtient donc un signal peu caractéristique.

— Exp. 2 : toutes les composantes sont très atténuées et déphasées de π/2. ce qui entraîne en sortie un signal
nul. On peut aussi expliquer la présence des pics : en effet, une asymptote de +20 dB/déc correspond dans
le domaine complexe à diviser par jω, c’est-à-dire à dériver.

— Exp. 3 : toutes les composantes sont conservées et peu voire pas déphasées : le signal de sortie est semblable
à celui de l’entrée. Seule l’offset, de fréquence nulle est ”coupée” par le filtre.

PTSI – Lycée Dorian 15 2025-2026



Filtrage OS–M Filtrage linéaire

VI.3 - Filtre passe-bande d’ordre 2
Expérience On réalise le passe-bande d’ordre 2 le plus simple : un filtre RLC.
On prendra R = 50Ω, L = 800mH et C = 32nF, ce qui impose f0 = 1 kHz et Q = 50. On réalise l’expérience
pour f = 330 Hz.

e(t)

C
L

R s(t)

oscillo 1 oscillo 2

Observations : on obtient un signal sinusoïdal de fréquence 1kHz, d’amplitude plus faible que celle du créneau.

Interprétation On superpose le diagramme de Bode du filtre et le spectre du signal d’entrée :

Seule la composante à 1kHz est conservée : on obtient donc un signal sinusoïdal.
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