
OS–N Propagation d’un signal

OS – Chapitre N

Propagation d’un signal

I - Signal, information et bruit

I.1 - Principes généraux
De façon générale, un signal est la variation temporelle d’une quantité physique portant une information1. La
quantité physique en jeu comme la nature de l’information portée peuvent être très variées. Dans tous les cas, un
capteur est nécessaire afin de détecter le signal et en extraire l’information. Très souvent, le capteur réalise une
transformation de la grandeur physique en une autre, plus facilement traitable par l’utilisateur (dans l’immense
majorité des cas, la grandeur physique finale est électrique).
Néanmoins, toutes les variations des grandeurs physiques ne portent pas forcément une information, celles qui ne
portent pas d’information sont appelées « bruit »1. La séparation signal/bruit est un problème très complexe,
subjectif (il dépend d’un point de vue de l’utilisateur) et est abordé par la discipline dite du traitement du
signal.
Exemple : dispositif rudimentaire de chronométrage en athlétisme.
Une source lumineuse émet un rayon lumineux d’un point A vers un point B. AB est la « ligne d’arrivée ». Un
capteur (cellule photoélectrique) placé en B transforme l’éclairement lumineux en grandeur électrique. Lorsqu’un
coureur franchit la ligne d’arrivée, le rayon lumineux n’arrive plus au récepteur et le capteur est sensible à cette
variation.

— grandeur : éclairement lumineux ;
— signal : variation de l’éclairement lumineux ;
— information : un coureur franchit la ligne d’arrivée ;
— capteur : cellule photoélectrique ;
— bruit : lumière ambiante et toute chose perturbant l’éclairement lumineux entre l’émetteur et le récepteur.

On notera que le signal n’est pas l’éclairement lumineux mais la variation de cet éclairement, qu’il y a certaine-
ment un seuil de détection de la cellule photoélectrique, et que pour séparer le signal du bruit, puis interpréter
correctement l’information transportée, il est nécessaire de connaître ou de savoir étudier les caractéristiques
temporelles des signaux et notamment leur spectre, c’est-à-dire l’amplitude des différentes fréquences dont il
est constitué.

I.2 - Exemples
Un signal peut être associé à n’importe quel type grandeur physique :

— mécanique : variation de position, de vitesse ;
— sonore ou acoustique : il s’agit également d’une oscillation mécanique, en l’occurrence celle d’un milieu

(par exemple un fluide comme l’air, l’eau, etc.), la grandeur associée étant alors la pression (ou surpression)
du milieu ;

— électrique : variations de tension ou d’intensité de courant ;
— électromagnétique : variation du champ électromagnétique, c’est-à-dire des champs électrique et magné-

tique ;
— optique : variation d’intensité lumineuse, de longueur d’onde ; un signal optique n’est qu’un cas particulier

de signal électromagnétique détectable par le capteur appelé « œil » ;
— thermodynamique : variation de pression, de température ;
— chimique : variation de composition (concentrations).

1. Richard Taillet, Loïc Villain, Pascal Febvre, Dictionnaire de physique, deuxième édition, De Boeck, 2009, page 503.
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I.3 - Signaux périodiques
a - Information portée
Les signaux parfaitement périodiques ne sont généralement porteurs que de peu d’information car une seule
caractéristique temporelle les définit : leur période T (ou leur fréquence f). Une fois le signal reçu pendant au
moins une période, ils se répètent indéfiniment, sans aucun changement, et n’apporte plus d’information.
Néanmoins, les signaux périodiques sont quand même très utilisés si l’une de leur propriété (amplitude ou
fréquence) varie dans le temps : c’est le cas des signaux modulés, à la base des communications par radio
notamment.
D’autre part, les signaux sinusoïdaux revêtent une importance majeure parce que n’importe quelle forme de
signal peut généralement être décomposée en une somme particulière de signaux sinusoïdaux d’amplitudes et
de fréquences différentes 2. La donnée de ces amplitudes et de ces fréquences de décomposition, appelée spectre
du signal, est alors une information (sur la source du signal par exemple).

b - Ordres de grandeur de fréquences
En acoustique : les signaux acoustiques audibles par l’Homme ont des fréquences comprises entre quelques
dizaines de hertz et une quinzaine de kilohertz, l’intervalle étant variable d’une personne à l’autre et avec l’âge.
La norme HiFi retient comme plage de fréquence l’intervalle [20 Hz ; 20 kHz]. Les ultrasons ont des fréquences
supérieures à 20 kHz ; néanmoins, certaines personnes ayant une fréquence d’audition haute proche de 20 kHz,
pour éviter que ces ultrasons ne leur soient audibles (ce qui peut vite être très pénible), on utilise en travaux
pratiques une fréquence bien supérieure, d’environ 40 kHz.
En électromagnétisme et en optique : Les figures 1.1 et 1.2 résument les différents domaines électroma-
gnétiques. On retiendra que :

— l’énergie électrique domestique est transportée à la fréquence de 50 Hz ;
— les téléphones portables et le Wifi utilisent des fréquences autour du gigahertz ;
— les micro-ondes sont comprises entre 3 · 108 et 3 · 1011 Hz ;
— le domaine visible, étudiée par l’optique est contenu dans l’intervalle de longueurs d’onde [400nm ;

700nm nm], c’est-à-dire des fréquences autour de 5 · 1014 Hz.
En travaux pratiques, les gammes de fréquences électriques utilisées sont très variables mais on peut retenir
que de façon usuelle elles vont de quelques hertz à quelques mégahertz (voir figure 1.3 où l’on peut observer
l’évolution temporelle d’une tension grâce à un oscilloscope).

L’analyse détaillée des signaux périodiques a été menée au chapitre précédent (OS M – Filtrage linéaire), nous
utiliserons par la suite les notions déjà vues, en particulier :

— signaux sinusoïdaux,
— valeur moyenne d’un signal périodique et cas particulier des signaux sinusoïdaux,
— valeur efficace d’un signal périodique et cas particulier des signaux sinusoïdaux,
— décomposition en série de Fourier d’un signal périodique quelconque, spectre d’amplitude.

II - Propagation d’un signal
Il peut arriver que la variation d’un signal s(t) en un point donné induise une variation du même signal en un
autre point : s devient un signal spatio-temporel s(M, t).
L’information liée à s se propage alors, sans déplacementmacroscopique de matière : on parle de propagation
d’une onde.
La nature de l’onde est liée à la nature du signal transporté. Si celui-ci est un scalaire, on parlera d’onde scalaire,
s’il s’agit d’un vecteur (caractérisé par une intensité, une direction et un sens), on parlera d’onde vectorielle.
On donne ci-dessous une liste des ondes les plus fréquemment rencontrées

2. Cette décomposition est appelée décomposition de Fourier.
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Figure 1.1 – Spectre en énergie, fréquence et longueur d’onde lumineuses.
Par Christophe Dang Ngoc Chan Cdang at fr.wikipedia (work by Cdang) [GFDL (http://www.gnu.org/copyleft/fdl.html) ou CC-BY-SA-3.0 (http:
//creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons.

Figure 1.2 – Spectre électromagnétique et spectre visible.
Par Tatoute and Phrood (inconnu) [GFDL (http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/) ou
CC-BY-SA-2.5-2.0-1.0 (http://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via Wikimedia Commons.

Figure 1.3 – Capture d’écran d’un oscilloscope numérique, affichant l’évolution temporelle d’un signal sinusoïdal.
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a - Onde mécanique
Le signal est une grandeur mécanique, en général le déplacement local d’un objet autour d’une position d’équi-
libre moyenne. Par exemple :

— élongation d’un ressort : onde scalaire longitudinale (le déplacement local est dans la même direction que
la propagation de l’onde) ;

— corde vibrante : onde scalaire transversale (le déplacement local est perpendiculaire à la direction de
propagation de l’onde).

b - Onde acoustique
Il s’agit d’un cas particulier d’onde mécanique se déplaçant dans un milieu matériel. La grandeur associée est la
pression P ou plus exactement les variations ∆p de pression autour de la valeur moyenne P0 (avec ∆p � P0).
Une variation locale de la pression va entrainer une modificiation de la force appliquée sur les particules voisines,
qui va à son tour engendrer le déplacement de ces particules. La masse volume est ainsi modifiée, ce qui engendre
à son tour une modification de la pression en ce point : l’onde se propage.
Dans un milieu fluide (liquide ou gaz), cette onde est scalaire longitudinale), dans un solide (onde sismique par
exemple), elle peut comporter une composante de cisaillement (onde transversale).
On retiendra les ordres de grandeurs de vitesse de propagation des ondes acoustiques :

Propriété : Vitesse du son

dans l’air cair ≈ 340m s−1 dans l’eau ceau ≈ 1500m s−1

c - Onde électrique
Dans un circuit électrique, i représente le déplacement des charges dans les conducteurs. Cette grandeur ne
peut varier instantanément, il s’agit d’onde d’un signal qui se propage et donc d’une onde électrique (scalaire).
Il en est de même pour la tension u. On retiendra que la vitesse de propagation de cette onde électrique est de
l’ordre de la vitesse de la lumière c ≈ 3 · 108 m s−1 (à ne pas confondre avec la vitesse moyenne des charges qui
se dépacent, de l’ordre du mm s−1, cf cours OS-F) et que, si on prend en compte ce phénomène de propagation,
on ne peut plus se placer dans le cadre de l’ARQS.

d - Onde électromagnétique
La théorie de l’électromagnétisme, qui sera étudiée plus en détail en PT, démontre qu’une variation locale
du champ électrique ~E entraîne une propagation spatiale de cette variation, mais également une variation du
champ magnétique ~B (et réciproquement, une variation du champ magnétique engendre une variation du champ
électrique). On parle alors d’onde électromagnétique.
On retiendra que cette onde, contrairement aux précédentes, n’a pas besoin de milieu matériel pour se propager,
elle peut donc se déplacer dans le vide. Le vitesse de propagation est définie par

v =
c

n

où c est la vitesse de la lumière dans le vide et n l’indice du milieu. Dans la quasi-totalité des milieux (et dans
le vide), les champs ~E et ~B sont perpendiculaires entre eux, et perpendiculaires à la direction de propagation
(voir figure 1.4) : il s’agit d’une onde vectorielle transversale.

Figure 1.4 – Représentatioin d’une onde électromagnétique dans le vide.
D’après wikipedia.org
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III - Onde progressive unidirectionnelle
Dans cette partie, nous allons « fixer » la direction de propagation de l’onde. Nous pouvons commencer par
l’étude d’un cas particulier : la corde vibrante.

III.1 - Corde vibrante
Nous nous intéressons à la propagation d’un ébranlement (ie déformation locale de la corde par rapport sa
position l’équilibre) le long d’une corde tendue.

Application : Déplacement de l’ébranlement

À l’instant t0, on déforme une extrémité de la corde. Par la force de tension interne la corde, cette
déformation va se déplacer le long de celle ci.

x

y t = t0

x

y t > t0

La corde ne se déplace pas de façon globale, seul l’ébranlement se déplace le long de celle-ci : un point M, lié à
la corde ne se déplace que le long de l’axe (Oy), pas selon (Ox), les points A,B, C et D, liés à l’ébranlement et
pas à la corde ne se déplacent que en (Ox), pas en (Oy), il caractérisent l’état vibratoire de l’ébranlement. On
peut conclure u’il s’agit bien d’une onde unidirectionnelle transversale.

Dans cette modélisation, l’ébranlement se déplace sans se déformer, on peut noter ∆x le déplacement pendant
l’intervalle de temps ∆t (∆x est le même pour tous les points liés à l’ébranlement, ie A, B, C, D, …).

La célérité, ou vitesse, de l’onde est donc c =
∆x

∆t
.

Remarques :
— c est homogène une vitesse, et s’exprime en m s−1 ;
— c ne correspond pas à un déplacement de matière mais d’information : aucun des point matériels, liés à la

corde n’a une vitesse de c ;
— une étude mécanique permettait de démontrer que, pour une corde « idéale » c =

√
F/µ où F est la tension

de la corde et µ sa masse linéique.
État vibratoire

On considère un point lié à l’onde, caractérisé par son état vibratoire y(x, t). L’onde se propageant sans
se déformer, on avait le même état vibratoire (ie le même y) en x = 0 et en t−∆t où ∆t est le temps
de propagation soit ∆t = ∆x

c = x
c On a donc

y(x, t) = y(0, t−∆t) = y
(
0, t− x

c

)
La quantité u = t− x

c
définit l’état vibratoire de l’onde ou encore

y(x, t) = y
(
0, t− x

c

)
= f

(
t− x

c

)
= f(u) ∀t, x
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III.2 - Onde progressive unidirectionnelle
Nous pouvons maintenant généraliser ces résultats à d’autres configurations et d’autres types de signaux en
gardant les hypothèses suivantes :

— une direction de propagation unique (en général (Ox) ;
— un milieu transparent (ie pas d’absorption) ;
— un milieu non dispersif (ie une seule vitesse de propagation).

Définition : Onde progressive unidirectionnelle

Soit un signal s se propageant sans se déformer le long dun axe (Ox) dans le sens des x croissants. On
a alors

s(x, t) = s
(
0, t− x

c

)
= f

(
t− x

c

)
= g(x− ct) ∀(x, t)

où f et g sont deux fonctions quelconques qui caractérisent la forme de l’onde

Remarque : pour une onde progressive dans le sens des x décroissants, on aura

∀(x, t) s(x, t) = s
(
0, t+

x

c

)
= f

(
t+

x

c

)
= g(x+ ct)

Évolution temporelle à x donné

On fixe une valeur pour x, et on étudie l’évolution temporelle du signal en ce point, qui sera donc
caractérisée par la fonction sx(t). Par exemple, on repère un point sur la corde vibrante (marque de
couleur par exemple) et on suit le déplacement de ce point, ou encore on suit le déplacement d’un
bouchon à la surface de l’eau. De façon plus générale, cela revient à s’intéresser au signal reçu par un
récepteur immobile.
On a s(x, t) = f

(
t− x

c

)
� en x = 0, s0(t) = f(t)

� en x = x1, sx1(t) = f
(
t− x1

c

)
= s0

(
t− x1

c

)
= s0(t−∆t1)

avec ∆t1 =
x1

c
: temps de propagation entre x = 0 et x = x1.

� en x = x2, sx2(t) = f
(
t− x2

c

)
= f

(
t− x1

c
+ x1−x2

c

)
= sx1 (t−∆t12)

avec ∆t12 =
x2−x1

c
: temps de propagation entre x = x1 et x = x2.

Évolution spatiale à t donné

On fixe une valeur pour t, et on étudie la variation spatiale du signal en cet instant, qui sera donc
caractérisée par la fonction st(x). Pour la corde vibrante, cela revient à étudier une « photo » de la
corde prise à l’instant t.
On a s(x, t) = g (x− ct)

� en t = 0, s0(x) = g(x)

� en t = t1, st1(x) = g (x− ct1) = s0 (x− ct1) = s0(x−∆x1)
avec ∆x1 = ct1 : distance parcourue par l’onde entre t = 0 et t = t1.

� en t = t2, st2(x) = g (x− ct2) = g (x− ct1 − c(t2 − t1)) = st1 (x−∆x12)
avec ∆x12 = c (t2 − t1) : distance parcourue par l’onde entre t = t1 et t = t2.
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Application : Évolution spatiale vs évolution temporelle

Tracer les courbes ci-dessous pour une onde progressive unidirectionnelle se propageant dans le sens des
x croissants de célérité c = 0,5m s−1.

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

s 0
(x
)

t = 0 s

x

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

s 2
(x
)

t = 2 s

x

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

s 4
(x
)

t = 4 s

x

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

s 6
(x
)

t = 6 s

x

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

s 8
(x
)

t = 8 s

x

1 2 3 4 5 6 7 8 9 10

−2

−1

0

1

2

s 1
0(
x
)

t = 10 s

x

1 2 3 4 5 6 7 8 9 10 11 12

−2

−1

0

1

2

s 6
(t
)

x = 6m

t

On retient que la forme de l’onde est inversée entre les tracés de sx(t) et st(x).
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III.3 - Onde progressive sinusoïdale
Soit une onde progressive unidirectionnelle, on peut alors écrire s(x, t) = f(u) avec u = t − x

c . L’onde est
sinusoïdale si la fonction f est elle-même sinusoïdale : f(u) = A cos(ωu+ ϕ).

Définition : Onde sinusoïdale
Une onde progressive s(x, t) est sinusoïdale si elle s’exprime sous la forme

s(x, t) = A cos (ωt− kx+ ϕ)

Remarques :
— On utilise indifféremment les vocabulaires onde sinusoïdale, onde harmonique, onde monochromatique.
— k = ω

c est la norme du vecteur d’onde ~k. k s’exprime en rad/m. Le vecteur d’onde est défini par ~k = k ~ux

où ~ux est le vecteur unitaire colinéaire à la direction de propagation de l’onde, orienté dans le même sens
que celle-ci.

— La phase dépend en même temps de t et de x : φ(t, x) = ωt− kx+ ϕ

— Le cosinus est périodique de période 2π, ce qui mène à une double périodicité :

• temporelle (à x fixé) : période T =
2π

ω
et fréquence f = 1

T = ω
2π . T s’exprime en s et f en Hz ;

• spatiale (à t fixé) : longueur d’onde λ =
2π

k
et nombre d’onde σ = 1

λ = k
2π . λ s’exprime en m

et σ en δ (1 δ = 1m−1).
— La relation entre périodicités spatiale et temporelle est donnée par la définition du vecteur d’onde :

Loi : Péridodicités d’une onde progressive sinusoïdale

k =
ω

c
λ = cT

Déphasage

Si on regarde l’onde en un point x1 et à l’instant t1, puis en un point x2 à l’instant t2, le déphasage
est

ϕ2/1 = φ(x2, t2)− φ(x1, t1) = ω∆t− k∆x

avec ∆t = t2 − t1 et ∆x = x2 − x1. On a également

s(x2, t2) = A cos (ωt2 − kx2 + ϕ) = A cos
(
ωt1 − kx1 + ϕ+ ϕ2/1

)
� en t fixé : on place par exemple 2 récepteurs R1 et R2 aux distances x1 et x2 de l’émetteur E

�
E R1 R2 ϕ2/1 = −k∆x

Remarque : le déphasage étant défini modulo 2π, il est tout à fait possible que le signal en
R2 soit en avance sur celui en R1, même si ce dernier est plus proche de l’émetteur !

� en x fixé : on place un récepteur à la distance x de l’émetteur et on regarde le déphasage
entre les signaux aux instants t1 et t2.

ϕ2/1 = ω∆t

� Relation temps-fréquence-phase

Temps Espace Phase
période T λ 2π
décalage ∆t ∆x ∆ϕ

∆t

T
= ∆x

λ
= ∆ϕ

2π
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— La vitesse de phase vϕ d’une onde harmonique est la vitesse à laquelle se propage une phase constante de
l’onde (comme un maximum, un minimum ou un point de même argument). Elle décrit donc le déplacement
des motifs de l’onde, et non celui de l’énergie ou de l’information.
Si la phase reste constante pendant un déplacement ∆x, le décalage temporel correspondant ∆t est donnée
par

∆ϕ = ω∆t− k∆x = 0

On a donc, comme vϕ = ∆x
∆t , vϕ =

ω

k
.

III.4 - Limites du modèle de l’onde progressive unidirectionnelle
a - Milieu dispersif
Un milieu est dispersif si les ondes harmoniques ne se déplacent pas toutes à la même vitesse, c’est-à-dire si
la vitesse de phase dépend de la pulsation : vϕ(ω). On ne peut alors plus définir rigoureusement la célérité de
l’onde c. Les ondes sinusoïdales restent progressives et continuent à se propager sans se déformer. en revanche,
les ondes non monochromatiques ne sont plus progressives. Un paquet d’onde, qui est une onde localisée dans
l’espace, résulte de la superposition de plusieurs ondes sinusoïdales de fréquences (et de longueurs d’onde) diffé-
rentes. Chaque composante harmonique se déplace à une vitesse de phase différente. Cette différence de vitesses
entraîne une déformation progressive du paquet d’onde au cours du temps. La propagation globale du paquet,
associée au transport de l’énergie ou de l’information, est alors décrite par la vitesse de groupe vg, distincte de
la vitesse de phase dans un milieu dispersif. On peut démontrer vg = dω

dk .

Tous les milieux ne sont pas dispersifs, et cela dépend également du type de l’onde et de la gamme de fréquence
(ou longueur d’onde) envisagée.

— Les ondes acoustiques ne sont pas dispersives (ou très faiblement dispersives) ;
— pour les ondes lumineuses, le phénomène de dispersion est étudiée via l’indice optique n du milieu : si n

dépend de λ, le milieu est dispersif ;
— un exemple classique de phénomène de dispersion est la propagation d’une oscillation à la surface de

l’eau. Une étude complète permet de démontrer que la vitesse de phase s’exprime vϕ = a√
k

où a est une
constante.

b - Onde sphérique
Le modèle de l’onde unidirectionnelle est bien adapté lorsque l’on se fixe une direction unique (par exemple, on
place plusieurs récepteurs sur une même direction depuis une source unique), ou si les récepteurs sont loins de
la source (on retrouve le modèle du point à l’infini vu en optique géométrique, représenté par un ensemble de
droite parallèles donc une direction unique).

Pour une source ponctuelle isotrope (ie l’onde est émise de manière identique dans toutes les directions de
l’espace), on adoptera plutôt le modèle de l’onde sphérique. Les fronts d’onde (ie points de l’espace qui sont
en phase, où qui sont atteints par l’onde au même instant) sont alors des sphères concentriques centrées sur la
source. À mesure que l’onde se propage, l’énergie émise se répartit sur des surfaces sphériques de rayon croissant ;
par conservation de l’énergie, la même puissance traverse des surfaces de plus en plus grandes. Il en résulte une
diminution de l’amplitude de l’onde avec la distance à la source, typiquement en 1/r (la surface d’une sphère
est proportionnelle à r2 mais l’énergie/la puissance d’un signal est également proportionnel au signal au carré).
Il faut bien noter que la diminution de l’amplitude n’est ici pas due à des phénomènes d’absorption (le milieu
reste parfaitement transparent) mais à une « dilution » géométrique.
L’expression d’une onde harmonique sphérique au niveau d’un point situé à la distance r de la source serait
ainsi

s(r, t) =
A

r
cos(ωt− kr + ϕ)

c - Milieu absorbant
Dans un milieu absorbant, l’onde perd de l’énergie au cours de sa propagation en raison des interactions avec
le milieu (frottements, conversions en chaleur, excitations internes, etc.). Cette perte est caractérisée par un
coefficient d’absorption, qui quantifie l’atténuation de l’onde par unité de distance. Contrairement au cas d’un
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milieu non absorbant, la diminution d’amplitude ne provient pas seulement de la géométrie de propagation,
mais d’une dissipation réelle de l’énergie. L’amplitude (et l’intensité) de l’onde présente alors une décroissance
exponentielle avec la distance, traduisant l’absorption progressive de l’énergie par le milieu.

IV - Phénomène d’interférences

IV.1 - Superposition de deux signaux
On s’intéresse maintenant à la superposition en un point M donné de deux ondes sinusoïdales synchrones (ie
même pulsation), par exemple issues de deux sources distinctes S1 et S2

�
S1 : s1(t) = A1 cos(ωt+ φ1)

�
S2 : s2(t) = A2 cos(ωt+ φ2)

M
Le signal en M est

s(M, t) = S1(M, t) + S2(M, t)

avec

{
s1(M, t) = A1 cos(ωt+ ϕ1(M)) et ϕ1(M) = −k S1M + φ1

s2(M, t) = A2 cos(ωt+ ϕ2(M)) et ϕ2(M) = −k S2M + φ2

Le signal en M s’écrit donc s(M, t) = A1 cos(ωt + ϕ1(M)) + A2 cos(ωt + ϕ2(M)). Or, on a vu aux chapitres
précédents que la superposition de deux signaux sinusoïdaux synchrones était un signal sinusoïdal, de même
pulsation. On peut ainsi écrire

s(M, t) = A cos(ωt+ ϕ)

Les valeurs de l’amplitude A et de la phase à l’origine dépendent évidemment des amplitudes individuelles des
signaux A1 et A2 ainsi que des phases à l’origine (ie en t = 0) au point M ϕ1(M) et ϕ2(M). En pratique on ne
cherchera à déterminer que l’amplitude A du signal (indépendante du temps mais qui dépend de la position du
point : A(M)).

IV.2 - Amplitude du signal résultant
Loi : Formule de Fresnel

L’amplitude A de la superposition de deux signaux sinusoïdaux synchrones, d’amplitudes et phases à
l’origine respectives A1, ϕ1 et A2, ϕ2 est donnée par

A2 = A2
1 + A2

2 + 2A1A2 cos (ϕ2 − ϕ1)

Démonstration

On a

{
s1(t) = A1 cos(ωt+ ϕ1)

s2(t) = A2 cos(ωt+ ϕ2)
et s(t) = s1(t) + s2(t) = A cos(ωt+ ϕ)

On applique cos(a+ b) = cos a cos b− sin a sin b

A [cos(ωt) cosϕ− sin(ωt) sinϕ] = A1 [cos(ωt) cosϕ1 − sin(ωt) sinϕ1]

+ A2 [cos(ωt) cosϕ2 − sin(ωt) sinϕ2]
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[A cosϕ] cos(ωt)− [A sinϕ] sin(ωt) = [A1 cosϕ1 + A2 cosϕ2] cos(ωt)
− [A1 sinϕ1 + A2 sinϕ2] sin(ωt)

On identifie les termes en cos(ωt) et en sin(ωt) :{
A cosϕ = A1 cosϕ1 + A2 cosϕ2

A sinϕ = − (A1 sinϕ1 + A2 sinϕ2)

On isole A :

A2 = A2
(
cos2 ϕ+ sin2 ϕ

)
= (A1 cosϕ1 + A2 cosϕ2)

2 + (A1 sinϕ1 + A2 sinϕ2)
2

= A2
1

(
cos2 ϕ1 + sin2 ϕ1

)︸ ︷︷ ︸
=1

+A2
2

(
cos2 ϕ2 + sin2 ϕ2

)︸ ︷︷ ︸
=1

+2A1A2 [cosϕ1 cosϕ2 + sinϕ1 sinϕ2]︸ ︷︷ ︸
=cos(ϕ2−ϕ1)

= A2
1 + A2

2 + 2A1A2 cos (ϕ2 − ϕ1)

Remarque : si A1 = A2 alors A2 = 2A2
1 [1 + cos (ϕ2 − ϕ1)].

IV.3 - Interférences constructives et destructives
On définit les configurations suivantes :

Interférences constructives

Les interférences sont constructives si l’amplitude A est maximale.

Le terme en cos vaut 1, on a donc

ϕ2 = ϕ1 [2π] ; ϕ2 − ϕ1 = 2pπ, p ∈ Z les deux signaux sont en phase

L’amplitude est alors

Amax =
√

A2
1 + A2

2 + 2A1A2 = A1 + A2

Interférences destructives

Les interférences sont destructives si l’amplitude A est minimale.

Le terme en cos vaut -1, on a donc

ϕ2−ϕ1 = π [2π] ; ϕ2−ϕ1 = (2p+1)π, p ∈ Z les deux signaux sont en opposition de phase

L’amplitude est alors

Amin =
√
A2

1 + A2
2 − 2A1A2 = |A1 − A2|
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Définition : Contraste
Le constraste C est défini par

C =
Amax − Amin

Amax + Amin

On a évidemment 0 ≤ C ≤ 1.

Cas particulier A1 = A2

On a alors
Amax = 2A1 = 2A2 Amin = 0 C = 1

IV.4 - Figure d’interférences
a - Différence de chemin
On reprend la configuration à 2 émetteurs et un récepteur

�
E1

�
E2

M

r1

r2

Au niveau des sources

E1 : e1(t) = S1m cos(ωt+ φ1)

E2 : e2(t) = S2m cos(ωt+ φ2)

Le signal en M est

s(M, t) = s1(M, t) + s2(M, t) avec

{
s1(M, t) = e1(t−∆t1) où ∆t1 = r1

c

s2(M, t) = e2(t−∆t2) où ∆t1 = r2
c

Expression du déphasage ∆ϕ

Le déphasage est donné par ∆ϕ = ϕ2 − ϕ1

∆ϕ = ω (∆t2 −∆t1) + (φ2 − φ1) =
ω

c
(r2 − r1) + (φ2 − φ1)

Définition : Différence de chemin
La différence de chemin δ entre deux ondes issues de deux sources distinctes au niveau d’un point M
quelconque est la différence entre les distances parcourues par les deux ondes.

δ = E2M − E1M = r2 − r1

Remarques :
— δ est une distance et s’exprime en m ;
— on dit également différence de marche ;
— en toute rigueur, il faudrait distinguer δ21 = r2 − r1 et δ12 = r1 − r2. Comme on ne considérera δ que

pour exprimer le terme d’interférences, dans lequel il n’intervient que dans le déphasage ∆ϕ qui lui même
intervient dans un cos, son signe importe peu et on pourra confondre les deux expressions.

Dans l’expression de ∆ϕ précédente, on reconnait ω
c = k, on en déduit l’expression suivante

Loi : Déphasage et différence de chemin

∆ϕ = kδ + (φ2 − φ1)
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